

H. G. Fortune (Editor), Peter Schoffhauzer, and David Haupt

Visual VST/i-Programming

H. G. Fortune (Editor), Peter Schoffhauzer, and David Haupt

Visual VST/i-Programming

A Comprehensive Guide to Creating

VST-FX and Instruments with Synthedit

w

Publisher Peter Gorges

Authors H. G. Fortune (Editor), Peter Schoffhauzer, and David Haupt

Cover art Complete Design, www.cmplt.com
Interior design and layout Uwe Senkler

© 2007 Wizoo Publishing GmbH, www.wizoobooks.com

ISBN 978-3-934903-59-3

All rights reserved. No part of this book may be reproduced in any form or
by any electronic or mechanical means, including information storage and
retrieval systems, without permission in writing from the publisher.

All product names and company names mentioned in this book are either
trademarks or registered trademarks of their respective owners.

http://www.cmplt.com/
http://www.wizoobooks.com/

Foreword by the Editor

As Stevie Winwood put it, “While you see a chance, take it.” Indeed: A
chance meeting at the supermarket next door sparked an idea that re-
sulted in the book you hold in your hands.

SynthEdit, in turn, sparked a VST/i boom. It offers even novices the
opportunity to create a VST/i of their own simply by connecting mod-
ules in the SE environment—no programming languages such as C++
required. This makes creating labyrinthine synthesizers and effects for
use in any VST-compatible audio software or sequencer kid’s stuff
rather than rocket science. Simply stack the building blocks—that is,
modules. What’s more, to beef up its already formidable powers,
SynthEdit accepts third-party modules.

Mastering SynthEdit is fun, and what better way to learn than by doing.
But without a guide to show hidden shortcuts and steer you clear of ob-
stacles and dead-ends, you may find the going too tough for your liking.

With the inside scoop on audio processing provided in this book, you
will better understand the basics and background of audio effects and
synthesis. Every turn of a page takes you that much closer to realizing
your vision of an effect or synthesizer in the virtual realm.

This book is your compass; use it to explore the seductive world of
VST/i. Seasoned sound-sculptor or newbie, you will soon find yourself
creating exciting musical tools.

As this book evolved, I often had cause to call on third-party developers’
help. Though an obliging spirit prevails in the SynthEdit community, I
was dumbfounded to discover how generously these kind people
shared the fruits of their labor.

Specifically, I wish to express my heartfelt gratitude to the following
gentlemen, princes among men all, for sharing their modules by way
of this book:

Ralph Gonzales, Dave Haupt, Rob Herder, Rick Jelliffe, Butch Kratzer,
Simonluca Laitempergher, Oli Larkin, Marc Lindahl, Kelly D. Lynch,

Etric van Mayer, Lance Putnam, Peter Schoffhauzer, Guido
Sconamiglio, and Dan Worrall.

A big round of applause and kudos go to Kelly D. Lynch for contribut-
ing modules unavailable to the public.

Thank you Lance Putnam for proofreading, Vera Kinter for providing
free GUI sets, and Hermann Seib for contributing the VST Host on
www.wizoobooks.com/synthedit for free.

Jeff McClintock provided SynthEdit, a phenomenally flexible tool for
creating anything from basic to advanced VST/i, even for C++ program-
mers using the SE SDK. And he merits special thanks for it.

The Chapters 1 to 4 are written by Peter Schoffhauzer, Chapter 5 which
was done by David Haupt, and the foreword and the appendix (A Brief
History of Synthesizers) by H. G. Fortune.

H. G. Fortune

Alfter/Bonn, October 2006

http://www.wizoobooks.com/synthedit

Table of Contents

Chapter 1 Welcome to the Wonderful World of SynthEdit 13
What’s SynthEdit? . 13

VST Technology . 13
What’s a VST Plug-in? . 14
X-Raying SynthEdit’s Hierarchic Structure 15

Modules . 15
Plug Types . 15
Module Properties . 18
Prefabs . 18
Containers . 19
Module/Prefab Categories . 23
Third-party Modules . 29

Chapter 2 Designing VST Effects in SynthEdit 31
Meet the Family of VST Effects . 31
Kicking Off a VST Effect Project . 31

Cooking Up a Simple Filter Plug-in . 32
Double Up for Stereo . 33

Fun with Auto Filters . 35
Installing Dry/Wet and Gain Knobs . 37
Follow Up with an Envelope Follower . 38
Go Low by Adding an LFO . 40
Super-size the Signal with a Stereo LFO 41
Adding a Tempo Sync LFO . 42
Finalizing the Filter . 45
Adding Patches and Presets . 47

Delay Effects . 48
Devising a Simple Delay . 48
Adding Dry/Wet Controls . 50
Slapping a Filter on the Wet Signal . 51
Synchronizing Delay Time to Tempo . 52
7

Table of Contents

8

Serve and Volley with Cross Delays (Ping-pong Delays) 55
Lining the Feedback Path with Filters . 57
Doing the Multi-tap Dance with Delays 59
Finalizing the Multi-tap Delay . 61

Give ’Em Some Room with Reverb . 62
The Schroeder Model . 64
The Moorer Model . 67
Good-to-Know Facts about Reverb . 69

Modulated Delay Effects (Flanger, Chorus) 69
Conjuring a Flanger . 69
Adding a Waveform Selector . 71
Making Modulation More Variable . 73
More About Flangers . 73
Tweaking the GUI . 74
Cooking Up a Chorus Effect . 77
Adding Two More Voices . 78
Switching Voices Off . 79

Phaser Effects . 80
Phaser Variation 1 . 80
Phaser Variation 2 . 82

Equalization . 84
Three-band Tone Controls . 85
Graphic Equalizers . 86
Adding Stereo Controls with Link Switch 89
Parametric Equalizers . 91

Dynamic Processing . 93
Setting Up a Simple Peak Limiter . 94
Putting Together a Peak Compressor . 96
Adding an RMS Level Detector . 97
How to Average . 97
Figuring Out RMS . 98
Adding an RMS Level Detector to the Compressor 99
Creating a Soft-knee Compressor . 99

Getting Down and Dirty with Distortion Effects 102
Hard Clipping . 103
Soft Clipping . 104
Fold-back Distortion . 105
What’s Up with Aliasing? . 106
Adding Filters to the Sonic Equation . 107
Getting Ugly with Lo-fi Effects . 108

Table of Contents

Vocoders . 110
Creating a Vocoder . 111
Improving Intelligibility . 114

More Mischief with Multi-band Processing 115
Crossovers . 116
Putting Crossover Filters into Practice . 119
Building a Two-band Compressor . 120

Chapter 3 Stepping Up to Synthesis . 123
Less Is More with Subtractive Synthesis . 124

Recapping Subtractive Synthesis . 124
More on MIDI . 126
MIDI to CV Properties . 128
Building a Basic Polyphonic Synth . 129
Sending Off Envelopes . 131
Adding Oscillators . 134
Pulse Width . 136
More on Waveforms . 137
Get Smooth with the Gibbs Effect . 139
Sizing Up Filters . 140
The State Variable Filter . 140
The Moog Filter . 144
Biquad Filters . 144
How Different Filter Types Compare . 146
Slapping a Filter on a Synth . 146
Adding a No-frills Filter . 148
Adding a Filter Envelope . 150
Adding Keyboard Tracking . 153
More About Filters . 154
Modulation . 155
LFOs . 155
Envelopes . 157
MIDI Messages . 157
Making a Modulation Matrix . 158
Finalizing Your Synth . 161

Getting Funky with FM Synthesis . 168
Introduction . 168
Experimenting with Modulator and Carrier Algorithms 169
Sidling Up to Sidebands . 172
Fabricating a Four-operator FM Synth . 174
9

Table of Contents

10

Chapter 4 Making the Most of Performance 181
What’s Sleep Mode? . 181
Go with Better Flow Control . 183
Optimizing Effects . 185
Optimizing Synths . 186

Polyphony . 186
Envelope Length . 186
Linear vs Non-linear Modules . 186
Forced Mono . 188

Less Is More, Usually . 188
Fight the Flab by Cutting Calculations . 188

Do the Math with Waveshaper2 . 188
Using Shared Coefficients for Stereo Biquad Filters 189
Stereo Filters with Identical Settings . 190
Detuned Filters . 190

Chapter 5 All About Sub-controls . 193
What Are Sub-controls? . 193

A Traditional SynthEdit Control . 193
A Typical Control Built with Sub-controls 194
The Wisdom of Using Sub-Controls . 197

More on What Sub-Controls Do and How They Do It 198
GUI Controls, Audio Processing, and Parameters 198
GUI Plugs and Data Types . 200
It Goes Both Ways—Data Flow and Animation 201

A Look at Native SynthEdit Sub-controls . 202
Data Manipulation Modules . 203
Data Type Conversion Modules . 208
GUI Input/Output Modules . 210
Parameter Interface Modules . 216
Routing Modules . 218
Miscellaneous Modules . 219

Putting Your Sub-control Skills into Practice 220
Making Simple Connections . 220
Bitmaps as Controls . 222
Simple Panel Selection . 223
Limiting and Ordering List Selection . 225
Adding a File Open Button . 225
Linking to a Website . 226
Exploring SynthEdit Prefab Controls . 226

Table of Contents

Adding Animation . 230
Splitting a List . 232

Extending the Sub-control Toolkit . 235
Data Manipulation Modules . 236
Float Array Processing . 246
Text/List Manipulation . 247
Data Type Conversion Modules . 256
GUI Input/Output Modules . 258
Text I/O . 265
Parameter Interface Modules . 266
Routing Modules . 267
Miscellaneous Modules . 271

More Hands-on Examples . 274
FloatIO Prefab . 274
Custom Selector Button Redux . 275
File Name Extractor . 277
Real-time Color Controls . 280
Quantized Tuning Knob . 282
4-panel Osc Selector . 283
Using One Control Readout . 286
Graphic MIDI Control Indicator . 289
The Future of Sub-Controls . 293

Appendix A Brief History of Synthesizers 295

Index . 299
11

1
1
Welcome to the Wonderful
World of SynthEdit

What’s SynthEdit?

Decades ago, synthesizers were ponderous beasts with a nest of wires
sprouting from their panels. To create sounds, one would plug these
patch cords into different modules such as oscillators, filters, envelope
generators, and amplifiers. The signal path—that is, the order in which
one connected modules—shaped the sound. Hard-wired synths, far
easier to port and use, later won the day. Modular synthesis reared its
head again with the arrival of digital technology. SynthEdit is a software
application enabling today’s users to build audio applications taking
the modular approach of yesteryear. Its modules put many processing
options at your fingertips. Few who practiced the cumbersome chore of
juggling real patch cords would contend that plugging in virtual patch
cords is anything but a quantum leap in convenience.

VST Technology

Storability is what makes SynthEdit stand out in the crowd of modular
software applications. Create a synth or an effect, save it in VST or
VST/i format, and you may share it with or sell it to people owning
VST/i-compatible hosts.

A trademark of Steinberg Media Technologies GmbH, VST stands for
Virtual Studio Technology. Steinberg rolled out Cubase VST for PCs in
1996. VST instruments and effects are separate modules rather than
features of the main application. In 1997, Steinberg released the format
as an open standard, inviting third-party developers to market their
own plug-ins.
13

Chapter 1 Welcome to the Wonderful World of SynthEdit

14

Figure 1.1

SynthEdit is a fast, convenient tool for creating VST/i. Put it in the
hands of people lacking programming experience or deep DSP knowl-
edge, and they can still deliver the goods. Courtesy of custom sub-con-
trols, you can skin and customize the GUI just about any way you see
fit. And with the many built-in and third-party modules, you have beau
coup sound-sculpting tools at hand.

What’s a VST Plug-in?

Typically, a VST plug-in is a Windows dll module that loads into the
host application, whose numbers are growing at a scary rate. Instru-
ments usually produce sound, and lack audio inputs. MIDI events such
as note on, note off, control change, pitchbend and mod wheel mes-
sages serve control purposes. Effects plug into individual audio tracks
or master bus’ inserts or sends (depending on host). Most feature one
or more inputs and outputs, and a set of adjustable parameters.

A VST plug-in comprises a DSP module that performs the actual pro-
cessing, and the graphic user interface, or GUI for short. Some VST
plug-ins lack a GUI, relying on the host panel for parameter adjust-
ment, though most offer one. It lets you tweak and toggle to your
heart’s content various graphical controls such as knobs, sliders, but-
tons, list boxes, text entry boxes, and so forth. SynthEdit VST plug-ins
always feature a GUI. The Save As VST command automatically cre-
ates the VST parameters the host and plug-in need to interact. End-
users rarely see anything other than the GUI.

The SynthEdit Structure window opens by default when you launch a
new project. It shows the DSP module, that is, the plug-in’s internal
structure. The Panel Edit window opens when you right-click the Struc-
ture window and select Panel Edit. It lets you edit this GUI. The section
“What Are Sub-controls?” from page 193 onwards discusses graphical
features and their properties in detail. The following sections deal
mainly with DSP effects and synths’ underlying modular structure.

X-Raying SynthEdit’s Hierarchic Structure

X-Raying SynthEdit’s Hierarchic Structure

Modules

Modules are your building blocks. They appear in the Structure win-
dow as boxes with various input and output plugs. Figure 1.2 shows a
Moog Filter module with three in plugs (Signal, Pitch, and Resonance)
on the left, and one out plug on the right. The Signal Out plug of a
slider (Insert > Controls > Slider) connects to the Pitch plug, so the
slider controls the filter’s cutoff frequency.

Figure 1.2

Heads up: Add modules using the Insert menu in the menu bar or the
Structure window’s right-click menu. Some modules are built in; oth-
ers appear in the default SynthEdit folder’s “modules” subdirectory.
SynthEdit automatically lists all folders and modules found in the
“modules” directory, so you can create folders for third-party modules
and copy the modules there.

Plug Types

Voltage Plugs
Most plugs are blue voltage pins. They serve mainly for audio signals
and control voltages. The standard range for control voltages is 0 to 10
volts, and −10 to +10 volts for audio signals. Plugging two or more
cords into the same input adds the signals.

List Plugs
Some modules plugs’ colors vary. For example, an Oscillator (Insert >
Waveform > Oscillator) has a green Waveform plug. These plugs refer-
ence list selections, meaning that green input plugs only accept list
plugs. These include List Entry, List Entry2, (Insert > Controls) and
Voltage To List (Insert > Conversion) modules. A list input accepts one
input only. A list output, in turn, connects to more list inputs, but only
if they are of the same type, such as the Waveform selector of two Oscil-
lator modules.
15

Chapter 1 Welcome to the Wonderful World of SynthEdit

16
Figure 1.3

Float Plugs
Serving mainly to communicate with GUI modules, these plugs come
in a different shade of blue. Float denotes the data type. They may have
any real number value.

Figure 1.4

MIDI Plugs
The green MIDI in and MIDI out plugs shuttle MIDI data such as note
on, note off, pitch bend, mod wheel, aftertouch, program change, and
control change events to and fro.

Figure 1.5

Text Plugs
Though these crimson text plugs enable mainly filename entry as
shown in figure 1.5, they also serve other purposes. GUI text plugs, for
example, provide caption titles for sub-controls. See the section “What
Are Sub-controls?” on page 193 for details.

X-Raying SynthEdit’s Hierarchic Structure
Spare Plugs
One SynthEdit plug type automatically clones itself when connected to
another module, for instance, a switch (Insert > Flow Control > Switch
(Many → 1)). Connect a module’s output to a spare input plug of the
switch, and another spare input plug appears. This means you may
connect as many inputs as you wish. Spare plugs may appear either as
inputs or outputs.

Figure 1.6

GUI Plugs
Some plugs’ background is blue rather than gray. Called GUI plugs,
they serve chiefly to communicate with the GUI and call sub-control
modules home. What sets GUI plugs apart from regular plugs is that
they are updated less frequently, about 20 times a second. To learn
more, see the sections on GUI plugs and Sub-controls.

Figure 1.7
17

Chapter 1 Welcome to the Wonderful World of SynthEdit

18
Module Properties

Every module offers a Properties window. Right-click a module and
select Properties; a window much like this appears.

Figure 1.8: Module properties window

Module: Rename the module any way you see fit. The new name
appears in the Structure window.

Plugs: This lists input plugs and their default values. Feel free to set a
default value for any plug. Note that connecting an input to the plug
overrides the values entered here.

Options: Some modules’ advanced settings may only be changed in the
Properties window, for instance, frequency scale (1 Volt/Octave or 1
Volt/kHz) and resolution settings.

CPU: Appearing below the options is a graph showing CPU use and
history. The green dots at the upper left show signal polyphony. See the
section “Polyphony” on page 21 to learn more.

Prefabs

SynthEdit lets you load a full set of modules called a prefab. Consisting
of several modules—anything from a flanger with an LFO to an entire
synth goes—prefabs are usually large and easy to insert. They often
hold modules in a container for easier handling. You will find them in
the “prefabs” folder. The Insert menu lists se1 files; copy frequently
used setups to it for easy, quick loading.

X-Raying SynthEdit’s Hierarchic Structure
Figure 1.9

Containers

Containers are key building blocks in SynthEdit. They round up several
modules, herding them into one logical corral to simplify the structure
of a synth, effect, or control feature. Every container affords you a view
of its internal structure and a panel window. Below you see the struc-
ture of a flanger prefab loaded to a container:

Figure 1.10

An IO Mod module feeds the audio signal into the container. The
Delay2 and the DCA modules delay the incoming singal and adjust the
wet signal level. Another IO Mod module routes it out of the container.
The original dry and wet signals blend to create a typical flanger effect.
Check out the section “Conjuring a Flanger” on page 69 for more on
flangers.
19

Chapter 1 Welcome to the Wonderful World of SynthEdit

20
After creating a container (Insert > Container), double-click it to view
its structure. The application automatically generates an IO Mod. Feel
free to use the same module for outputs, but note that creating another
IO Mod devoted to outputs makes for a tidier setup.

Controls on Module/Parent
Right-click a container and select Properties. The following panel pops
up:

Figure 1.11: Container properties

Enable Controls on Module, and the Structure window’s container box
shows the panel, as in figure 1.12.

Figure 1.12

Enable Controls on Parent, and these controls also appear on the main
container. You can handle them as one group as shown in figure 1.13.
This method goes for all control features with sub-controls (Knob,
Pitch Bender, List Entry2, Joystick, LED2, and VU Meter).

X-Raying SynthEdit’s Hierarchic Structure
Figure 1.13

Locked Containers
Lock a container if you wish to prevent further editing. Simply clicking
the Lock icon in the toolbar locks the active window. Or right-click the
container module and tick Locked. The spare plugs disappear when a
container locks, deterring you from adding connections. The box icon
in the container heading shows the status. An open green box stands
for unlocked; a closed gray box locked.

Polyphony
Containers are the key to managing polyphony in SynthEdit, so let’s
back up and look at what polyphony is all about. A MIDI to CV module
automatically converts incoming MIDI data into control voltages. Press
several keys at once and the MIDI to CV module produces a polyphonic
signal. The application creates how ever many clones all the down-
stream modules need. Generated internally, these clones are invisible
to us. When the signal leaves the container, the application shoehorns
it back into monophonic format.

A container’s default polyphony is six voices. Give figure 1.11 another
gander and note the option called Polyphony. You may set it to any
number up to 128, the MIDI maximum for voices. This of course limits
the number of voices and clones created during processing.

Heads up:
❖ The polyphony setting affects MIDI to CV modules. A container or

sub-container holds just one MIDI to CV module, so you cannot dial
in different polyphony settings within the same container.

❖ The Properties window shows the number of active clones for each
module. Figure 1.14 shows the bottom of an SV Filter’s Properties
window. The green dots at the CPU graph’s top left signal the speci-
fied clone is active. In figure 1.14’s scenario, max polyphony is four
voices, with three currently active.
21

Chapter 1 Welcome to the Wonderful World of SynthEdit

22
Figure 1.14

❖ Use the Special/Voice Combiner module to manually convert a poly-
phonic into monophonic a signal, for instance, to elicit guitar stomp
box-like distortion from a Waveshaper module.

❖ Polyphony is more complicated. Some modules force the signal into
mono format, for example, Delay2, Level Adj and Pan, when every
clone shares the same settings and these modules sit at the end of
the chain. Apply the effect to each voice and combine them, or com-
bine them and apply the effect—the outcome is the same. But
inserting these effects between polyphonic modules imposes
polyphony on them. Say you’re dealing with the following setup:

VCA (poly) → Pan (mono) → Delay2 (mono)

You decide to add a Waveshaper after Delay2, forcing all modules
(including Pan and Delay2) into polyphonic operation. This wastes
CPU resources, so economize by inserting a Special/Voice Com-
biner module before Pan. The distortion will of course sound differ-
ent.

Skins
Use your main container to select a skin for your plug-in. Choose either
the Skin option in the container’s Properties window, or right-click the
container’s Panel window and select the Skin menu from the list.

Automation
This right-click property lists all automation parameters used in the
container. You may define automation parameters specifically for one
patch or globally for all, and configure them as VST parameters or
MIDI continuous controllers for user to access.

X-Raying SynthEdit’s Hierarchic Structure
Module/Prefab Categories

Add modules and prefabs in the toolbar’s Insert menu or right-click
menu. They are grouped in different submenus, the default categories
being:

Controls
This menu comprises mostly parameter controls such as knobs, slid-
ers, switch, list and text entry boxes, mod wheel, pitch bend, joystick,
and keyboard as shown in figure 1.15.

Figure 1.15: Control modules

Note that the Slider offers an Appearance parameter listing various
sliders, knobs, and buttons for selection. Predating sub-controls, these
are the original SynthEdit controls as shown in figure 1.16. You can
skin all the controls shown here and create new types using sub-con-
trols. See the section “What Are Sub-controls?” on page 193 for details.

Figure 1.16: Original SynthEdit controls

Visual feedback modules also fall into this category. This group
includes the frequency analyzer, LED indicators, peak and VU meters,
and a volt meter as shown in figure 1.17.
23

Chapter 1 Welcome to the Wonderful World of SynthEdit

24
Figure 1.17: Visual feedback modules

Two other modules merit mention, Fixed Values and Image. The
former produces constant output voltages; the latter displays bmp or
png images on the GUI.

Conversion
This category’s modules convert data types, for example, floats to volts
and vice versa.

Effects
This category’s defaults are delay, flanger, chorus, ring modulation and
hard-clipping distortion modules and prefabs. A Clipper module lets
you restrict control voltages to any range of your choosing.

Examples
This category offers sample prefabs serving to do things like create low
frequency oscillators or a paged panel. You are sure to find these exam-
ples are edifying, so be sure to check them out.

Filters
These components cut frequencies from a signal. Filters come in vari-
ous guises with different characteristics. The most significant differ-
ence is the number of poles (the more poles, the steeper its cutoff
slope), and the frequencies they let pass.

Low pass: Allows only low frequencies to pass, filtering out frequencies
above the cutoff frequency

High pass: Allows only high frequencies to pass, filtering out frequen-
cies below the cutoff frequency

Band pass: Allows only a narrow band of frequencies around the cutoff
to pass, filtering out both low and high frequencies

X-Raying SynthEdit’s Hierarchic Structure
Band stop: Filters out a narrow band of frequencies around the cutoff
to, allowing all other frequencies to pass

All pass: Allows all frequencies to pass, but changes the incoming sig-
nal’s phase. Phaser effects usually feature this filter.

Single-pole low-pass filters also serve to smooth parameter changes
and create portamento effects. Use negative voltages for smoother tran-
sitions. See portamento_example.se1 on the disk to learn how to create
portamento by applying a one-pole LP filter to an oscillator’s pitch.

A one-pole high-pass filter set to 20–30 Hz serves to remove DC. Check
out the DC_filter.se1 example for more on this.

Flow Control
Switches let the user configure patch cords and choose sound-shaping
options, for example, to select an LFO’s destination and a signal proces-
sor. Figure 1.18 shows how a switch works using the DC filter prefab
from the preceding example. The Choice list plug lets you select cutoff
frequencies in 0.02, 0.025, and 0.03 increments (20 Hz, 25 Hz. and
30 Hz in 1 Volt/kHz scale).

Figure 1.18: The DC filter, again

Input/Output
Use the Sound In and Sound Out modules to access your audio card’s
input and output channels. Note that the unregistered version confines
you to just two output channels.

Wave Player and Wave Recorder modules play files from disk and
record any audio signal in different wav formats.
25

Chapter 1 Welcome to the Wonderful World of SynthEdit

26
Logic
SynthEdit comes with logic modules that use control voltages to trans-
fer data. 5 volts is the high value denoting true; 0 volts is the low value
denoting false.

This category also features different counters, a shift register, and a
Monostable module for creating a pulse with a fixed length.

Math
This group contains basic math modules such as Multiply, Subtract and
Divide. An Add module is not on board because simply connecting any
signals to the same input adds them. The Floor and Ceil modules
round the voltage input down and up to the nearest whole number. For
example, Floor rounds 1.45 volts down to one volt; Ceil rounds it up to
2 volts.

MIDI
This category’s modules mainly handle MIDI data, filtering it, playing
it from files, and converting it to control voltages and back to MIDI.
The menu also features MIDI sequencer modules, a MIDI Soundfont
Player, a Patch Select module for adding patches to your plug-in, and a
MIDI Automator module that lets you automate controls using a MIDI
mod wheel or controller commands.

Modifiers
This broad category features modules for adjusting levels (VCA—Volt-
age Controlled Amplifier and Level Adj), cross-fading (X-Mix), panning,
and inverting. Two Waveshapers distort signals or impose a customized
transfer function on a control voltage, say to use a specific velocity
curve. Waveshaper lets you draw the transfer curve manually by drag-
ging points, while Waveshaper2 accepts a mathematical equation. A
Rectifier inverts voltages’ charge from negative to positive. A Compara-
tor compares two levels, and a Peak Follower tracks a signal’s envelope.
The Quantizer module constrains the number of input steps, much
like bit reduction. Use this to do things like confine a slider or a knob’s
output value to whole numbers. Sample And Hold holds the incoming
level until it is retriggered.

X-Raying SynthEdit’s Hierarchic Structure
Figure 1.19: Waveshapers

Obsolete
This category contains an ancient version of Delay for compatibility.
Use Effects > Delay2 instead.

Special
Many different modules call this group home. Two modules detect and
clean denormal numbers generated by some third-party delays, filters,
and other modules’ feedback loops, unnecessarily consuming CPU
power. Monitor watches over MIDI signals and plugs’ status changes.
The OS Command module carries out system commands. Voice Com-
biner converts polyphonic signals to mono. Random Voltage gener-
ates—you guessed it—random voltages.

SynthEdit does not enable feedback, bar one exception. You can use the
Special > Feedback (delayed) module to create feedback loops. Connect
the Feedback module’s output to any module’s input, and the latter’s
output to the Feedback module’s input to configure feedback loops for
delays and the like. Note that this feedback is not sample based, and its
latency amounts to about 2 milliseconds at 44 kHz sample rate,
depending on audio buffer size.

Sub-Controls
Use these modules to build controls and GUI features. An entire chap-
ter of this book is devoted to these sophisticated tools.

Synths
This folder contains two drum modules, a subtractive synth, phase dis-
tortion synth, and an FM synth example.

VST Plug-ins
SynthEdit lists all VST/i plug-ins found at the location you specified in
Edit > Preferences > File Locations > VST Plugins. Subfolders may be
created in that directory, with their contents listed as submenus.
27

Chapter 1 Welcome to the Wonderful World of SynthEdit

28
Figure 1.20: A VST effect

Though SynthEdit lets you load and embed VST/i plug-ins in your
structure, the GUI does not appear if you embed it in your VST. If the
embedded VST/i plug-in is MIDI-enabled, use MIDI controller data to
manipulate it. Check the plug-in’s documentation to learn which con-
trollers you may use.

Heads up: Before releasing a plug-in with an embedded VST/i, check if
the license permits you to do this, or contact the author to get permis-
sion.

Waveform
This menu lists sound-generating modules. There are three types of
oscillators.

The Oscillator module generates band-limited sine, saw, ramp, trian-
gle, and pulse waveforms offering oodles of modulation options. It also
serves as a low-frequency oscillator, and generates white and pink
noise. White noise’s frequency spectrum is flat, whereas pink noise’s
frequency spectrum drops by 3 dB per octave and yields smoother
highs.

Figure 1.21: Sine, triangle, saw, and pulse waves

X-Raying SynthEdit’s Hierarchic Structure
Phase Dist Osc distorts a sine wave’s phase to create complex wave-
forms. Introduced by Casio with the CZ synth line in 1984, phase dis-
tortion is much like FM synthesis.

The Soundfont Oscillator loads and plays selected banks and patches
from Soundfont (.sf2) files. It renders sample data only, without enve-
lope, filter, and velocity settings.

The ADSR module creates amplitude, filter, pitch, and user envelopes.
A, D, S, and R stand for attack, decay, sustain and release, respectively.

Figure 1.22: ADSR envelope

Attack: Controls how fast the signal reaches peak level when the player
presses a key.

Decay: Controls how fast the signal falls from peak to sustain level.

Sustain: Controls the level at which the signal remains until the player
releases the key.

Release: Controls how fast the level returns to 0 when the player
releases the key.

Third-party Modules

You can create what in synth-speak is called a third-party module using
the SynthEdit SDK (Software Development Kit) and, say, a C++ com-
piler. Whatever your heart desires—oscillators, filters, effects, logic
operators, and many more—someone somewhere offers a third-party
module to fit the bill. The accompanying data on www.wizoo-
books.com/synthedit offers a rich selection of these. Again, SynthEdit
automatically lists all folders and modules found in the “modules”
directory, so you can create more folders and copy third-party modules.
See the web on www.wizoobooks.com/synthedit for details.
29

http://www.wizoobooks.com/synthedit
http://www.wizoobooks.com/synthedit
http://www.wizoobooks.com/synthedit

2
Designing VST Effects in
SynthEdit

Meet the Family of VST Effects

This chapter examines the different types of VST effects, reviewing the
ins and outs of creating all common signal processors. Beginning with
the basics, it describes how to assemble plug-ins featuring different
parameters and application possibilities. Many tips and much inspira-
tion for fine-tuning plugs await, so let’s get to it.

Kicking Off a VST Effect Project

A general rule for both instruments and effects: A main container in
the Structure window must hold an effect before you can save it as a
VST plug-in. Every container comprises one or more IO Mod modules
that pipe signal and data flows in and out. The number of channels
hinges on the number of inputs and outputs. For example, a main con-
tainer with one input and one output creates a mono-to-mono VST
plug-in. A container with one input and two outputs is a mono-to-ste-
reo effect. A container with two inputs and two outputs is a stereo-to-
stereo effect. The registered version of SynthEdit gives you more inputs
and outputs to juggle, letting you configure stereo side-chains (say, two
times two inputs), surround plug-ins (5 + 1 channels), multiple out-
puts, and so forth, the VST host allowing.
31

Chapter 2 Designing VST Effects in SynthEdit

32
Cooking Up a Simple Filter Plug-in

Create and open a container in the Structure window. Insert a Moog
Filter (Insert > Filters) and connect the IO module’s Spare pin to the fil-
ter’s Signal pin. You could connect the filter’s Output pin to the IO
Mod’s Spare pin. But for an uncluttered setup, your better bet is to cre-
ate another IO Mod (Insert > IO Mod) for the outputs and drag it to the
window’s right edge. Now slap some controls on the filter (Insert >
Controls > Slider). Conveniently, the slider takes on the input pin’s
name as you connect the two. Your Structure window should look like
something like this:

Figure 2.1: The structure of a simple filter (filter.se1)

Right-click the Structure window and select Panel Edit to open the
interface, which will be appear on the plug-in. The window’s size deter-
mines GUI’s size. Drag and move the sliders to the window’s top left
corner, and adjust window size so it holds the sliders as seen in figure
2.2.

Figure 2.2: A simple filter’s panel window

Kicking Off a VST Effect Project
Now you can save the plug-in. Open the File menu and select Save As
VST. Enter a name, say, Moog Filter. This header appears in the VST
host. Assign a unique, four-character ID to your plug-in so the host can
identify the plug-in. Click OK to save the VST effect. It should be ready
and waiting in your host. In Cubase SX, it looks like this:

Figure 2.3: The filter’s GUI in a host

Heads up:
❖ You may need to restart the host program or rescan the VST plug-

ins folder for your VST to appear.

❖ You can register your plug-in with the ID at the following official
Steinberg website:
http://service.steinberg.de/databases/plug-in.nsf/plug-in

Go-to files: Effects\Our first effect\filter.se1

Double Up for Stereo

Our first module is a mono-to-mono plug-in. For a stereo version, clone
this setup to both the left and right channels. To this end, add another
Moog Filter, and connect the input IO Mod’s Spare pin to the filter’s
Signal pin, and the filter’s Output pin to the output IO Mod’s Spare
pin. Recall that you may connect all inputs and outputs to the same IO
Mod, but adding another gives you tidier setup. New input and output
plugs appear on the container as you connect new pins to the IO Mod.
The sequence in which you connect plugs fixes their order. Now con-
nect the sliders to the second filter’s Pitch and Resonance pins.
Presto—your stereo version of the plug-in should be good to go.
33

http://service.steinberg.de/databases/plug-in.nsf/plug-in

Chapter 2 Designing VST Effects in SynthEdit

34
Figure 2.4: A stereo version of the filter (filter_stereo.se1)

Heads up:
❖ You may find building a more complex stereo version easier if you

put both the left and right channel setups into a container.

❖ To test your plug-in in the SynthEdit environment, plug an audio
source into the input and wire the outputs to a Sound Out module
or a Freq Analyser as shown in figure 2.5. Saving a plug-in as a
VST/i stores only the main container’s contents; the test signal and
Sound Out modules are not part of the plug-in.

Fun with Auto Filters
Figure 2.5: Testing the stereo filter in an SE environment

Fun with Auto Filters

Most plug-ins offer modulation sources, say, low frequency oscillators
(LFO) and envelope followers, to tweak audio parameters. This section
explains how to add these to the filter using a third-party module, Dave
Haupt’s DH_MultiFilter2. Download and copy DH_MultiFilter2.sem to
any “modules” subfolder in your SynthEdit folder, naming it mod-
ules\Filters\, modules\3rdparty\Filters, or something similarly imagi-
native. The module appears in the Insert menu’s folder selection. Cre-
ate a container and add two copies of DH_MultiFilter2 to its structure.
Now configure a setup similar to the stereo filter above. Connect a List
Entry (Insert > Controls > List) to the filter’s Filter Type selector plug.
You can connect the same list entry to both plugs. Your structure
should look like figure 2.6.
35

Chapter 2 Designing VST Effects in SynthEdit

36
Figure 2.6: The filter’s basic structure (autofilter1.se1)

You must tweak some parameters before you can use MultiFilters.
Open the filter’s Properties window and adjust the following parame-
ters:

Set Gain Compensation to On. This normalizes the output signal and
prevents clipping by setting the filter’s resonance peak to 0 dB.

Set Filter Stages to 1. This feature cascades several filters to create
steeper slopes, a service we can do without for the moment.

Turn your attention to the Input Mode. Some native and third-party
plug-ins feature variable input ranges or scales for controlling pitch.
Select Pitch/Res to set the Freq(Hz) | Pitch(v) plug to 1 Volt/Octave
mode. This ensures the Q | Res(v) plug controls resonance in a way that
serves our purposes. Be sure to adjust both filters.

Heads up: At times you may need several copies of a module sharing
the same parameter settings. If so, configure the parameters of one
module, and copy it as often as you like using Edit menu copy and
paste commands or key shortcuts. The application also copies your set-
tings, sparing you the tedium of mindless repetition.

Fun with Auto Filters
Time to adjust the Slider modules: Open the Pitch Slider’s Properties
window. Select Cutoff to rename it. Note the slider’s default low and
high settings have changed from 0 and 10 volts to 10 and 20,000 volts.
That’s high voltage, so set it back to 0 and 10 volts, as the input scale is
1 volt per octave with 5 volts equaling 440 Hz. Rename the resonance
plug Reso and set the Lo and Hi values to 0 and 10 volts, respectively. If
you prefer a knob’s look and feel to a slider’s, simply select Knob from
the list. Now when you patch in a mono test signal, you should get a
mono output signal.

Installing Dry/Wet and Gain Knobs

The balance of dry and wet signals usually calls for fine adjustment.
That’s what an X-Mix module does (Insert > Modifiers > X-Mix). Add
two copies, one for each channel. Connect the main input to the cross-
faders’ Input B plugs, and the filters’ outputs to the Input A plugs. Cre-
ate a new knob or copy and paste an existing knob, and connect its out-
put to the cross-fader’s Mix plug to dial in a smooth transition. Only the
dry (unfiltered) signal passes at −5 volts, while only the wet (filtered)
signal passes at 5 volts. The two signals blend at values between the two
extremes, creating a phaser-like effect at high resonance settings.

Figure 2.7: Installing a dry/wet knob (autofilter2.se1)
37

Chapter 2 Designing VST Effects in SynthEdit

38
You need a VCA (voltage controlled amplifier) module (Insert > Modifi-
ers > VCA) to adjust levels, one for each channel. Open the VCA’s Prop-
erties window and set Response Curve to Decibel to control the input
voltage level in decibel increments. For details on VCA response
curves, see the section on converting signal levels in the SynthEdit
manual.

Heads up: Third-party converter modules offer precise decibel values
for adjusting levels. Some examples in this chapter use DH_dBTo-Volt-
age to this end.

Go-to files:
❖ Effects\Filters\autofilter2.se1

❖ Effects\Filters\autofilter3.se1

Follow Up with an Envelope Follower

Filters often feature strange beasts called envelope followers. Sound-
sculptors use envelope followers to detect a signal’s contour. They rec-
tify and filter the incoming signal to extract the envelope curve, which
provide the control voltage for compressors or auto-wah effects.

Figure 2.8: A wave file in an editor with its envelope marked

SynthEdit offers you other choices for extracting a signal’s envelope.
Perhaps the most straightforward is to use a Peak Follower module
(Insert > Modifiers > Peak Follower). It has a Signal-in plug, and Attack
and Decay parameters to control the smoothing amount. These values
decide how quickly the envelope follower responds to sudden peaks.
One volt equals 20 milliseconds. A Level Adj module lets you handily
control the effect amount. Place it after the Peak Follower; then feed its
output signal into the filter’s Pitch plug. It adds up incoming signals,
so the envelope modulates the filters’ cutoff frequency.

Fun with Auto Filters
Figure 2.9: Inserting an envelope follower (autofilter4.se1)

Heads up:
❖ Both input plugs connect to the Peak Follower’s Signal-in plug, con-

verting them to mono and taking the average of the two signals. You
may tap the left and right channels’ envelope individually.

❖ To test the effect in the SynthEdit environment, you may find it nec-
essary to load a loop or other wave file using a Wave Player (Insert >
Input/Output > Wave Player).

❖ Fastest attack and decay values may over-excite the modulation
effect, causing it to spin too fast, the sound to warble, and aliasing
noise in the filter. Enter one volt as the low attack and decay value to
fix that problem.

❖ Equal to 600 milliseconds, 30 volts is fine for higher attack and
decay limits.

❖ Setting the range of the EnvMod knob to −10 Volts … 10 Volts
enables negative modulation. Negative voltages invert the envelope.

Go-to files: Effects\Filters\autofilter4.se1
39

Chapter 2 Designing VST Effects in SynthEdit

40
Go Low by Adding an LFO

An LFO is a low-frequency oscillator that modulates a given parameter
value at a slow rate. Though similar to an oscillator that produces audi-
ble waveforms, its frequency usually lies in the subsonic range between
0.01 Hz and 30 Hz. The most common waveforms are sine and trian-
gle as shown in figure 2.10.

Figure 2.10: Commonly used LFO waveforms: sine and triangle

Use an oscillator module (Insert > Waveform > Oscillator) to create an
LFO in SynthEdit. Open an oscillator’s Properties window and you will
see two modes for setting the frequency, 1 Volt/Octave and 1 Volt/kHz.
In 1 Volt/Octave mode, 5 volts equals 440 Hz, and every 1-volt change
doubles or halves the frequency. The conversion formula is:

Therefore, the default 0-to-10 volt range extends from 13.75 to
14080 Hz. The formula for converting frequency to voltage is:

Reach for your trusty calculator and confirm that 30 Hz equals 1.1255
V, and 0.01 Hz equals −10.4252 V. Connect a knob to an oscillator’s
Pitch plug, and enter these as high and low values. This affords you
exponential control over the LFO rate within the range of 0.01 Hz and
30 Hz. Name this knob Rate.

Frequency = 440 ∗ 2 Volts–5 = 13.75 ∗ 2 Volts

Voltage =
log (Freq)– log(440)

log(2)
+ 5 =

log (Freq)– log(13.75)
log(2)

Fun with Auto Filters
An oscillator’s default output range is +5 to −5 volts. Drop a Level Adj
module in after the oscillator’s Audio Out plug so you can adjust the
LFO’s depth. This example uses a triangle waveform selected in the
Properties window. So far, the LFO structure looks much like figure
2.11. Connect the Level Adj module’s Output plug to the filters’ Pitch
plug. The LFO then modulates the filters’ cutoff frequencies as shown
in the autofilter5.se1 prefab.

Figure 11: A simple LFO

Go-to files: Effects\Filters\autofilter5.se1

Super-size the Signal with a Stereo LFO

Figure 2.12: Two sine waves with different phase

To conjure sumo-sized stereo effects, build an LFO for both channels
and shift the two waveforms’ phases. To do this, you need another oscil-
lator with a Level Adj module, using the same knob to control the
41

Chapter 2 Designing VST Effects in SynthEdit

42
respective rate and depth. The oscillators’ Phase Mod plug controls the
waveform’s phase. Change this value for one oscillator. Setting Phase
Mod to 10 volts puts the two waveforms in opposite phase, so 0 to 10
volts is a good choice of range. Simply connect a knob to this plug and
name it Stereo. Figure 2.13 outlines the resulting structure. Now con-
nect a Level Adj’s output to plug a filter’s Pitch plug, and the other Level
Adj’s output to the other filter’s Pitch plug.

Figure 2.13: This is what a stereo LFO looks like.

Go-to files: Effects\Filters\autofilter6.se1

Adding a Tempo Sync LFO

Many plug-ins let you synchronize the LFO to the host’s tempo.
Though a bit tricky, this is not exactly rocket science. The Tempo Sync
LFO prefab in the Insert\Examples folder makes this chore even easier.
Check out figure 2.14 to reference the structure.

The tempo sync LFO bases on the BPM Clock2 module in the Insert >
Special folder. Its main purpose is to detect the host’s tempo and issue
a pulse to kick off downbeats. The Tempo Out plug provides tempo in
beats per minutes (BPM). One minute comprises 60 seconds, so divid-
ing the tempo in BPM by 60 gives you the number of beats per second,
which equals frequency in Hz. The oscillator is in 1 Volt/kHz mode, so
multiply the dividend by 1000 to get a kHz result. Now you know why

Fun with Auto Filters
we divide 60,000 to obtain the frequency. Your Division choice divides
or multiplies 60,000 by a number provided by the Fixed Values (Insert >
Controls > Fixed Values) modules. The result is the frequency for the
given time period.

Figure 2.14: Complex but not confusing—a tempo sync LFO’s structure

To whip up a stereo version of this LFO, insert another oscillator with
the same pitch and an adjustable phase. Connect the Spare plug to an
oscillator’s Phase Mod plug to create an input plug for the container.
Right-click the IO Mod module and select Properties to rename the
plug. Label lets you change the input and output plugs’ names. Be sure
to select a triangle for the oscillators’ waveform and set their Freq Scale
to 1 Volt/kHz. If you wish to hide the Spare plug, lock it by clicking the
Lock icon in the toolbar or right-clicking the container and ticking
Locked.
43

Chapter 2 Designing VST Effects in SynthEdit

44
Figure 2.15: Going stereo with twin oscillators

Use a switch (Many → 1) to toggle conveniently between a free-running
oscillator and a tempo sync LFO. Connect the oscillator’s Audio Out
and the tempo sync LFO’s output to the switch’s spare plug; ditto for
the other channel. Be sure to do this in the same order in each setup,
configuring the free-running oscillator first and the tempo sync LFO
second, or vice versa. Connect a List Entry module to both switches’
Choice plug. Open the first switch’s Properties window to change the
list entries. Editing labels also changes the list entries. If the List Entry
module connects to several List inputs, the first connected switch
defines the labels in the list.

Heads up:
❖ A List Entry module comes in many guises, including Combo Box,

Led Stack, Labeled Led Stack, Selector, Button Stack, Rotary Switch
and Up/Down Selector. Figure 2.16 gives you a glimpse of the
default visuals. Bear in mind that you can skin all these selectors.

Fun with Auto Filters
Figure 2.16: A List Entry module’s default visuals look like this

❖ Figure 2.17 maps out the final auto-filter structure with a switch sit-
ting between the free-running oscillator and the tempo sync LFO.

Go-to files: Effects\Filters\autofilter7.se1

Finalizing the Filter

Once you have finished configuring the plug-in’s structure, it is time to
design the user interface. Open the Panel window and arrange knobs
in a practical array. The Panel Group serves no other purpose but to
help you lay out GUI features (Insert > Controls > Panel Group). To
rename (right-click and select Properties) and resize features, simply
drag them to the bottom right corner.

Tips:
❖ Select several features by dragging the mouse or clicking modules

while holding the control key down.

❖ Disable Edit > Snap to Grid to position features more precisely.

❖ Pressing Ctrl-A selects all features.

Readout boxes’ information is not always relevant. To hide these boxes,
open the slider or knob’s Properties window and disable Show Readout.
Congratulations are in order if your panel resembles figure 2.18.
45

Chapter 2 Designing VST Effects in SynthEdit

46
Figure 2.17: The whole kit and caboodle—an auto-filter with an LFO and
envelope follower

Figure 2.18: An auto-filter panel with a default skin

If this look and feel fails to float your boat, use a skin on www.wizoo-
books.com/synthedit or design one to taste. To apply a skin, you must
load its files to a subfolder of the SynthEdit\skins folder. Named
VK_Mini-Grey, the skin in figure 2.19 came courtesy of Vera Kinter.

Select a skin in one of two ways. Open the Main container’s Properties
window and select the skin from the list at the bottom, or right-click the
panel window and select the skin from the Skin menu.

http://www.wizoobooks.com/synthedit
http://www.wizoobooks.com/synthedit

Fun with Auto Filters
Figure 2.19: An auto-filter with a groovy custom skin (VK_Mini-Grey)

Go-to files:
Effects\Filters\autofilter7gui.se1
Effects\Filters\autofilter7gui2.se1

Adding Patches and Presets

One more chore awaits before saving this filter as a VST plug-in. In
order to enable patches, you must insert a patch selector. Drop a Patch
Select (Insert > MIDI > Patch Select) module anywhere into the struc-
ture. It automatically handles patches and presets. The Panel window
opens with a Patch Select bar at the top. Serving solely to create
patches, it will not appear in the final plug-in. Browse the patch bank,
configure different patches, and give them meaningful names. Once
you have created plenty of presets for your plug-in, click File > Save as
VST.

Heads up: 16 patches is the limit for plug-ins saved using the unregis-
tered version of SynthEdit.

Go-to files: Effects\Filters\autofilter8.se1
47

Chapter 2 Designing VST Effects in SynthEdit

48
Delay Effects

Basic delay effects load the input signal to a buffer and render it after a
brief interval. Most employ a feedback loop, cycling the output signal
back to the input. The signal repeats infinitely as its amplitude gradu-
ally decreases. Some sonic scientists insert a filter to the feedback loop
to simulate high- and low-frequency damping. Others use more delay
lines (taps) to conjure complex delays. And all this merits our further
investigation.

Devising a Simple Delay

SynthEdit features a module devoted to creating delay effects. Called
Delay2 (Insert > Effects > Delay2), it is a delay line of variable length
with built-in feedback. Figure 2.20 depicts its Properties window.

Delay Time (secs) sets maximum delay time in seconds. 10 seconds is
the buffer limit for delay. The Modulation plug determines the actual
delay time contingent on the Delay Time parameter. That is, if Delay
Time is 1.0 seconds, 10 volts modulation yields a one-second delay, 5
volts 500 ms delay, and so forth. For modulated delay lines such as
flanger and chorus effects, you should enable the Interpolate Output to
achieve smoother transitions between delay times.

Figure 2.20: A look at a Delay2 module’s Properties window

Figure 2.21 maps the simplest delay structure. Each input channel
feeds a delay line, with a VCA adjusting output levels. The VCA’s
Response Curve plug is in Decibel mode, so the delayed signal’s level
adjusts on a decibel scale. The wet processed signal mixes with the dry

Delay Effects
input signal to produce the composite output signal. The Length slider
controls delay time, while the Feedback slider adjusts feedback
amount. The channels share the same settings, so this is a mono delay
imposed on a stereo signal.

Figure 2.21: A streamlined delay structure (delay1.se1)

Max delay time is one second. To display and enter delay time in milli-
seconds, set the slider’s high value to 1,000 and divide the slider’s out-
put by 100, or use a Divide module (Insert > Math > Divide) to do this.
Connect the slider’s output to the Divide module’s Input 1. This is the
numerator. Open the Divide module’s Properties window and set Input
2 to 100. This divides the slider’s output by 100 for an output range of 0
to 10 volts, suitable for the Modulation plug. Add another slider with a
Divide module and you can control the left and right channels’ delay
times independently. See figure 2.22.

Figure 2.22: A stereo delay metered in milliseconds (delay2.se1)
49

Chapter 2 Designing VST Effects in SynthEdit

50
Heads up: The module’s Properties window lists every plug’s default.
If no wires are connected to the plug, SynthEdit assumes the default
value as input, sparing you the effort of wiring up the Divide modules’
Input 2 plugs. The principle at work here is the same as connecting a
Fixed Values module (Insert > Controls > Fixed Values). Though this
merely provides fixed voltages to the selected plugs, the values appear
in the plug’s label in the Properties window.

Figure 2.23: Fixed values

These prefabs use a common Feedback control for both channels. An
independent Feedback control for each channel is often more practical.

The Delay module in the Insert > Obsolete folder uses a −5 to +5 volt-
age range for the Modulation plug. Use Delay2 instead.

Go-to files:
Effects\Delay\delay1.se1
Effects\Delay\delay2.se1

Adding Dry/Wet Controls

You may use plug-ins as insert or as send effects. Figure 2.24 is a sche-
matic diagram of inserts and sends. Delay, reverb, flanger, chorus, and
other effects comprising a mix of dry and wet signals can usually serve
as sends. A send effect patches only the wet signal out. The host mixes
it with the dry signal, producing the output. Send effects are great for
processing any number of channels without burdening the CPU. If you
want to enable a plug-in as a send effect, you must find a way to mute
the dry signal, usually by adding dry/wet and gain controls or separate
gain controls for dry and wet signals. The following prefabs use sepa-
rate dry and wet gain controls.

Delay Effects
Figure 2.24: A schematic view of inserts and sends

Slapping a Filter on the Wet Signal

Delay plug-ins often use filters to shape the delayed signal. Types vary,
though usually low-pass and high-pass filters simulate high and low
frequency damping. The delay3.se1 example uses a—adjective alert—
two-pole, resonant, low-pass, state variable filter in the wet signal chain
to dampen high frequencies (Insert > Filters > SV Filter). Two VCAs
adjust dry signal levels.

Figure 2.25: A low-pass filter in the wet chain dampens high frequencies
(delay3.se1).

Heads up:
❖ “State-variable” means a two-pole filter with a 12 dB/octave slope.

The application calculates low-pass, high-pass, band-pass, and band-
reject filtering simultaneously, so you are free to choose any output
signal.

❖ When resonance approaches 10 volts, the SV filter begins to self-
oscillate, which is uncool in a delay filter. Confine the resonance
slider’s range to 0 to 9 or 9.5 volts to nip this problem in the bud.

❖ Savvy designers set the filter cutoff plug’s low value to about 3 volts,
or 110 Hz, the likelihood of lower frequencies seeing use is slim.
51

Chapter 2 Designing VST Effects in SynthEdit

52
Roughly equivalent to 22,000 Hz, 10.6439 volts is an excellent choice
of high value. Anything beyond that only the user’s dog will hear.

❖ To simulate low frequency damping, insert another SV filter after
the low-pass filter, connecting its Hi Pass plug to the VCA module.

Synchronizing Delay Time to Tempo

Users often wish to synchronize delay to song tempos, so do them a
favor and afford them the opportunity to enter delay length in beats
rather than milliseconds. Time to don your math cap: The BPM Clock2
(Insert > Special > BPM Clock2) module provides the tempo in volts.
Set the Delay2 modules’ max delay time to 10 seconds so one volt of
modulation means one second of delay. One minute comprises 60 sec-
onds, so divide 60 by the tempo in BPM to get the voltage required for
one beat. Take, for instance, 120 BPM: 60/120 = 0.5, so a beat is 500
milliseconds long. Now what if users wish to synchronize delay to
halves or quarters rather than whole beats? Give them that alternative
by dividing the beat’s length by 2, 4, and so on to arrive at 250, 125, or
another increment in milliseconds. Figure 2.26 outlines the structure
for determining unit length.

Figure 2.26: Determining unit length in seconds

Connect the Fixed Values module’s Spare plug (Insert > Controls >
Fixed Values) to the Switch module’s Spare plug (Insert > Flow Control
> Switch (Many → 1)), thereby creating selection options. The labels
defined in the switch’s Properties window determine which labels the
list box will display. This structure resides in its own container. To show
the Unit list box on the container and the GUI, open the Container’s
Properties window and enable Controls on Parent and Controls on
Module. If necessary, open the unit container’s panel window and
resize the Unit list box.

Delay Effects
Heads up:
❖ Every container comes with a panel holding graphical features. You

can edit and move them around as you would the main GUI’s fea-
tures. Tick the Controls on Module box to show them on the main
structure’s container. Tick the Controls on Parent box to show them
on the main GUI. This option serves chiefly to create custom con-
trol modules. See the section “What Are Sub-controls?” from page
193 onwards for details.

Figure 2.27: Controls on module

❖ When using this structure, be sure to set the Delay2 modules’ Delay
Time parameter to 10 so one volt of modulation equals one second
of delay.

Once you have chosen the unit and calculated its length, you need a
control feature to set delay length in that unit of measurement. This
length is always the unit length multiplied by a whole number, so you
need a control feature that puts out whole voltages, say a switch with
fixed whole number values. You could also opt for a slider with an out-
put value rounded to whole numbers, as in this example.

A slider or knob produces a floating point number within the given low
and high limits. Two modules round off a signal voltage: Ceil (Insert >
Math > Ceil) rounds the input up to the nearest whole volt (2.5 yields 3
volts; −2.5 yields −2 volts.) Floor (Insert > Math > Floor) rounds the
input down to the nearest whole volt (2.5 yields 2;−2.5 yields −2). Set a
slider’s lower and upper limits to 1 and 8 volts, and the Floor module
will round the output signal down to whole numbers between 1 and 8.
This is fine for selecting delay length in a scale based on beats.

The problem is the slider’s readout shows the floating point value
rather than the rounded number. The solution is to use sub-controls.
Switch the slider or knob’s readout box off in the Properties window by
disabling Show Readout. Instead, task a Text Entry2 sub-control mod-
ule (Insert > Sub-Controls > Text Entry2) to display the value. The input
plug’s blue background tells you this is a GUI Text plug, so you must
convert the signal plug into a GUI Text plug.
53

Chapter 2 Designing VST Effects in SynthEdit

54
The Volts to Float (Insert > Conversion > Volts to Float) module con-
verts voltage into a float plug, which a Patch Mem–Float Out (Insert >
Sub-Controls > Patch Mem–Float Out) module can then transform into
a GUI float value. In this case, its only purpose is to convert voltage.
Then convert the GUI float value to GUI text using the Text To Float
(Insert > Sub-Controls > Text To Float) module. Bear in mind that GUI
module plugs’ flow may be bidirectional. Here the float value enters the
module on the right, and the text value exits to the left. Open the Text
To Float module’s Properties window to specify how many digits you
wish to see displayed. Set it to 0 to show only the whole number with-
out decimals. Figure 2.28 affords you a view of this structure.

Figure 2.28: Showing readouts using sub-controls

Now you can dump this structure into a container to create a control
prefab for selecting length. Open the container’s panel window and
drag the Text Entry box under the slider. Enable the Controls on Parent
and Controls on Module options for the container. Rename the slider to
Length. Lock the container if no further changes are necessary. For
more on sub-controls, refer to the section “What Are Sub-controls?”
from page 193 onwards.

Figure 2.29

Heads up: Embedding a structure couldn’t be easier: Press the key-
board’s Control key or drag the mouse to select the target modules, and
then select the Containerise Selection command from the Edit menu.

Delay Effects
All that remains for you to do now is select a Multiply (Insert > Math >
Multiply) module that multiplies the unit length by the slider or knob
length, and patch its output to the Delay2 module’ Modulation plug.
Multiplication is commutative, so the order of wires is irrelevant. Fig-
ure 2.30 diagrams the resulting structure.

Figure 2.30: Structure of a tempo sync delay (delay4.se1)

Go-to files: Effects\Delay\delay4.se1

Serve and Volley with Cross Delays (Ping-pong Delays)

A cross delay is much like a feedback delay, except that its signal feeds
back to the other delay line’s input, bouncing the signal between the
left and right channels. Hence the term ping-pong delay. Figure 2.31 is
a schematic diagram of a cross delay.

Figure 2.31: Schematic diagram of a stereo cross delay
55

Chapter 2 Designing VST Effects in SynthEdit

56
We must use an external feedback path rather than the Delay2 mod-
ule’s internal feedback circuit. However, if you try to create this struc-
ture with a feedback path, you will get the error message:

“This patch contains a FEEDBACK path, Please remove.”

The reason for this is SynthEdit’s internal structure, in which modules
process audio in buffers rather than by samples. You can hurdle this
obstacle using a Feedback module (Insert > Special > Feedback
(delayed)) to create feedback paths. There is a minor catch, though.
Feedback is not instantaneous; the module introduces a touch of
latency. Its amount hinges on buffer size, usually around 90 to 100
samples. This comes to about 2 milliseconds at 44 kHz, and one milli-
second at 96 kHz sampling rate. Though the effect is negligible in
some applications, timing may suffer in others.

Heads up: Say a patch comprises two chains, one with, the other with-
out feedback. Latency may elicit flanging, leaving undesirable artifacts
in the signal. Insert a Feedback (delayed) module to the other chain to
compensate. On the upside, the two chains are now in sync sans flang-
ing. On the downside, you end up with about 2 milliseconds global
latency. Latency compensation prevents flanging in this patch.

Figure 2.32 outlines the basic cross-feedback delay structure. It bases
on a tempo sync patch, meaning delay length selectors are synchro-
nized to tempo. The top two Feedback (delayed) modules live in the dry
signal path, delaying the signal to compensate for the feedback loop’s
latency. The bottom two feedback modules’ outputs connect to the
Delay2 modules’ Signal in plugs. Level Adj modules adjust their output
levels, thus determining feedback level. The scaled signal feeds back
into the other channel’s Feedback module, creating the cross-delay
effect. VCA modules scale the Delay2 modules’ output signals and
determine the wet (delayed) signal level.

Delay Effects
Figure 2.32: A basic cross-feedback delay structure (crossdelay1.se1)

Heads up:
❖ Using the Delay2 modules’ internal feedback is a no-go, so be sure

to set their Feedback plugs to 0.

❖ Simply add a Switch (1 → Many) to transform this cross delay struc-
ture into a conventional feedback delay. Choose between sending
the signal back to the same or the other channel to let you toggle
between conventional and cross feedback. You could also add
another Level Adj module that feeds back to the same channel. This
lets you adjust normal and cross feedback amounts independently.

❖ The signal recycles infinitely at 100 % (10 volts) feedback level. Lev-
els above 100 % (> 10 V) continually ramp up the volume, eventually
distorting the signal and “exploding” the effect. Set feedback to
100 % or lower, unless an endless loop is what you want.

❖ You can set feedback levels in decibels using a DH_dBToVoltage
module.

Go-to files: Delay\crossdelay1.se1

Lining the Feedback Path with Filters

In the patches we have worked with so far, the Delay2 module’s limita-
tions prevented us from inserting filters in every feedback loop.
Instead, we filtered the global wet output signal. But adding filters to
the feedback path puts far more sounding-shaping power at users’ fin-
gertips. It enables realistic simulations of damping, where the effect
57

Chapter 2 Designing VST Effects in SynthEdit

58
cumulates with every feedback loop. Resonance and gain pile up quick
in resonant, EQ, and shelving filters with positive gain, soon blowing
the effect up. To prevent this, use filters without resonance or with gain
normalization (DH_MultiFilter2), or allow negative gain in shelving fil-
ters only. The following example employs cascaded one-pole low-pass
and high-pass filters with a smooth 6 dB/octave slope for high and low
frequency damping. Place filters pre Delay2 effects so the filtering
effect accumulates. Figure 2.33 illustrates the structure with the filter.

Figure 2.33: A cross-delay with filters lining the feedback path

Heads up:
❖ Filters in the feedback path are nifty, but many settings cut the sig-

nal’s amplitude. Feel free to use feedback levels a touch over 100 %
for experimental effects. This lets you create endless ambient tex-
tures, but mandates careful adjustment of the feedback level. A peak
limiter comes in handy for limiting high feedback levels.

❖ Drop Pan modules in front of the amplifiers to stereo pan the two
channels and create leaner effects.

❖ Place any filter or effect in the feedback chain, say, flangers and
phasers, to conjure striking soundscapes. Again, proceed with cau-
tion when using level-boosting prefabs and adding resonance or
feedback, as output levels may soon spike.

Delay Effects
Caution:
Before experimenting with structures containing external feedback
paths and potentially high feedback levels, back off speakers and head-
phones’ volume to protect your equipment and hearing.

Go-to files: Delay\crossdelay2.se1

Doing the Multi-tap Dance with Delays

Many delays feature several delay lines called taps for greater flexibility.
Adding Delay2 modules does this trick neatly. To keep things reason-
ably simple, this example converts the incoming signal to mono, add-
ing the two channels and multiplying by 0.5 to get the average. This
composite signal feeds into four delay lines. A low-pass filter follows
each delay to dampen high frequencies. A dedicated Pan module pans
mono signals (Insert > Modifiers > Pan). And a value range of −5 to +5
volts determines panning positions. Like a Level Adj module, the Vol-
ume plug adjusts levels.

A third-party conversion module called DH_dBToVoltage adjusts levels
in decibel increments. Built by David Haupt, it comes with his Basic-
ModulePack. DH_dBToVoltage converts precise decibel values to volt-
age for use with linear level adjustment modules, for example Level Adj
or the Pan module’s Volume plug. With the Vref plug set to the default
10 volts, the value is in the standard 0 to 10 volts scale. The default
range of the dB in plug is −100 to 0 volts, so if you connect a slider or
knob to it, its low and high values adapt automatically. A decibel range
of −40 to 0 will do for a tap volume.

Figure 2.34: DH_dBToVoltage

Now adjust the dry signal’s level, and mix it with the four taps’ output
signals. The delay lines’ delay time is the one second default, so the
sliders’ high value is 1,000. Divide each slider’s output signal by 100 to
enable millisecond delay length settings. All taps sport a dedicated
feedback control. Figure 2.35 shows one tap’s structure with the dry sig-
nal.
59

Chapter 2 Designing VST Effects in SynthEdit

60
Figure 2.35: Structure of one tap with the dry signal (multitap.se1)

Drop the tap into a container to tidy up. Hold the Control key to mark
the Divide, Delay2, SV Filter, Pan, and DH_dBToVoltage modules for
the tap, and then select Containerise Selection from the Edit menu.
Change the new container’s input labels. The dBToVoltage and Level
Adj modules for the dry signal are also containerized for your conve-
nience. Figure 2.36 maps this structure.

Figure 2.36: Containerized Tap and Level Adj modules (multitap2.se1)

To add more taps, simply copy the Tap container with its controls. Con-
nect the averaged input to the tap’s Signal in plug, and connect its out-
puts to the IO Mod module. Figure 2.37 shows the entire structure.

Delay Effects
Figure 2.37: A delay structure with four taps (multitap3.se1)

Go-to files:
Delay\multitap1.se1
Delay\multitap2.se1
Delay\multitap3.se1

Finalizing the Multi-tap Delay

The effect is nearing completion; only the GUI awaits your attention.
Open the panel window and behold a jumbled mess at its center. Pan-
els housing so many control features call for some tidying tricks. Grab
a control feature and drag it away from the rest. Leave it selected and go
to the Structure window, where it is also selected. Select all control fea-
tures in that group by holding the Control key or dragging the mouse.
Now you can move them collectively in the panel window by dragging
the isolated feature. This method is also useful for identifying which
control feature is selected on the panel.

Here’s another approach: First lay out one tap’s control features in the
panel window; then copy and paste them in the Structure window.
Select the Tap container to do this. Copying also clones control features’
panel position, so you can move them collectively.
61

Chapter 2 Designing VST Effects in SynthEdit

62
Figure 2.38: A possible layout for the four-tap delay using the default skin

Give ’Em Some Room with Reverb

Perhaps you noticed that when you tweak the four-tap delay’s parame-
ters, certain settings evoke diffuse delay patterns reminiscent of reverb.
Though primitive, early digital algorithms relied on similar structures
in combination with all-pass filters to simulate diffuse reverbs. So let’s
briefly recap how reverb works.

Every room or reverberant space reflects sound differently. An impulse
is a sudden burst of sound, like an electrical arc, a sharp hand clap, a
popping balloon, or a gunshot. Figure 2.39 charts a typical room’s
response to such an impulse.

Figure 2.39: A reverb’s impulse response

The immediate response is distinct echoes bouncing off walls called
early reflections (ER). The pattern gradually grows more diffuse as
amplitude decays exponentially. Compare this to the impulse response
of a comb filter, in essence a delay line with feedback. Figure 2.40 plots
a comb filter’s impulse.

Give ’Em Some Room with Reverb
Figure 2.40: A comb filter’s impulse response

Exponentially decaying impulses follow the first impulse. Though this
is similar to an exponentially decaying reverb, in the frequency
response peaks occur at equally spaced frequencies like the teeth of a
comb, hence the name comb filter. This elicits a ringing metallic
sound. Digital pioneer Manfred Schroeder proposed using parallel
comb filters in combination with all-pass filters for digital reverb. Fig-
ure 2.41 is a schematic diagram of an all-pass filter.

Figure 2.41: Schematic diagram of an all-pass filter

An all-pass filter comprises a feedback and a feed-forward path, yield-
ing flat frequency response. Nonetheless, it serves to shape transients
and simulate diffusion courtesy of its decaying impulse response. Fig-
ure 2.42 graphs an all-pass filter’s impulse response.
63

Chapter 2 Designing VST Effects in SynthEdit

64
Figure 2.42: An all-pass filter’s impulse response

The Schroeder Model

Schroeder proposed a structure with four parallel comb filters and two
serial all-pass filters. The comb filters simulate the reflections, and the
all-pass filters add density to the sound by smearing transients and
making the reverb more diffuse.

Figure 2.43: A Schroeder reverberator

Below you see the structure of a Schroeder reverberator in SynthEdit.
The input signal feeds into a container holding four parallel delay lines
wired to two serially cascaded all-pass filters.

Give ’Em Some Room with Reverb
Figure 2.44: The structure of a Schroeder reverberator in SynthEdit
(schroeder1.se1)

Figure 2.45 outlines the four comb filters. In this structure, Delay2
modules serve as comb filters, with delay times of 52, 63, 79, and
83 ms. Though seemingly random, textbook reverb design calls for
these values to be mutually prime numbers. The comb filters’ length
determines the simulated room’s size. Moorer suggests using linearly
distributed values over a ratio of 1 to 1.5. Different delay values color
reverb in different ways, so fine-tune the delay times manually. Chang-
ing the length of just one comb filter can have a tremendous impact on
the reverb’s overall sound. The Multiply module divides the result by
the number of comb filters so the reverb and dry signal level are equal.

Figure 2.45: The structure of the CombX4 container
65

Chapter 2 Designing VST Effects in SynthEdit

66
The reverb time is defined as the time for the level to drop from the ini-
tial level to −60 dB. Schroeder’s equation for calculating a comb filter’s
time goes like this:

g denotes feedback level, and t delay length. Here’s how to calculate the
feedback level for a given delay time and total reverb time:

Take, for example, 52, 63, 79, and 83 ms and one second total reverb
length. This equation yields ±0.8555, ±0.8277, ±0.7889 and ±0.7795
(±8.555, ±8.277, ±7.889 and ±7.795 volts) for the feedback levels. The
structure above is simplified, with the same feedback level for all delay
times. Though this makes it easier to control reverb time, on the down-
side, comb filters with longer delays are slower to fade. Jezar Freeverb
employs this method, with satisfying results. Setting feedback to a
value of one (decay to 10 volts) elicits infinite reverb.

Figure 2.46 shows the all-pass filter structure. It is the SynthEdit equiv-
alent of the all-pass scheme in figure 2.38. A Feedback (delayed) mod-
ule feeds a delay module’s output back to its input. It adds the inverted
and scaled input signal to the Delay2 module’s output signal, lending it
all-pass characteristics. The Inverter module changes the signal’s
charge. The all-pass filters smear the transients in the reverb, creating a
diffuse sound. The longer the delays, the more diffuse the reverb. True
enough, but Moorer recommends some 6 ms for the all-pass’ delay
time because longer delays produce audible reiterations. The left and
right channels delay times’ differ, yielding a stereo effect. If the input
signal is mono, or the input’s stereo width is irrelevant, you can convert
the two channels to mono by averaging. Then only one CombX4 struc-
ture feeding both left and right all-pass filters yield the same results for
mono signals, with the benefit of a lighter CPU load.

T =
60

–20 log l g l
t =

–3
logl g l

t

g = ±e3t⁄T

Give ’Em Some Room with Reverb
Figure 2.46: An all-pass filter in all its glory

Heads up: Conserve CPU resources by using sc:RevAllpass modules.
They consume only about third of the processing power devoured by
this all-pass structures.

Go-to files: GoReverb\schroeder.se1

The Moorer Model

You can across James Moorer’s name earlier in the book. He improved
Schroeder’s model, which suffers the drawback of a metallic sound.
Moorer suggested using low-pass filters in the comb filters’ feedback
path to simulate high frequency damping. He also simulated early
reflections using tapped delay lines. Moorer’s model employs six paral-
lel comb filters and just one all-pass filter. Figure 2.47 outlines its sche-
matic.

Figure 2.47: The Moorer model

Each comb filter’s feedback loop sports a one-pole low-pass filter as
shown in figure 2.48.
67

Chapter 2 Designing VST Effects in SynthEdit

68
Figure 2.48: A comb filter with a low-pass filter in the feedback loop

This structure is similar to our cross delay. Here the one-pole filters are
set to 1 Volt/kHz mode. Called Delay3 in the prefab, a CombX6 con-
tainer holds six of these in parallel array. Figure 2.49 depicts the main
structure. Divide the Damping knob’s output by 100 to show the damp-
ing frequency in Hz.

Figure 2.49: Moorer’s remarkable reverberator (moorer1.se1)

This prefab employs delay times proposed by Moorer—50, 53, 61, 68,
72, and 78 ms. To simulate different room sizes, scale these values
using Level Adj modules. Check out moorer2.se1, in which the Size
parameter scales all delay times. To avoid conjuring a ringing metallic
sound, limit the Size parameter to at least one volt.

Go-to files:
Delay\moorer1.se1
Delay\moorer2.se1

Modulated Delay Effects (Flanger, Chorus)
Good-to-Know Facts about Reverb

Though many reverb plug-ins employ the Schroeder/Moorer model,
ours is of the simple sort. It simulates neither early reflections nor
escalating density, so do this to improve it:

❖ Use individual delay taps with varying amplitude to simulate early
reflections; then feed them into the comb/all-pass structure.

❖ Use reverb algorithms that mix the left and right input channel, add-
ing about 25 % of each channel to the other. This emulates naturally
occurring blending.

❖ Moorer holds that more than six comb filters or more than one all-
pass filter do not improve audio quality markedly. Some reverbs beg
to differ. A case in point is the oft-reused Jezar Freeverb code sport-
ing eight parallel comb filters and four serial all-pass filters per
channel.

❖ Throw in a high-pass filter to simulate low-frequency damping.

❖ Apply equalization to shape the reverb’s sound.

❖ If you hang with having less control over the sound, try using third-
party reverb modules based on the Jezar Freeverb code such as
DH_Reverb and UD-Reverb, or EVM Rev-8 and EVM Rev-12 mod-
ules.

Modulated Delay Effects (Flanger, Chorus)

This section is aptly named because the primary building blocks of
modulated delay effects are delay lines, or comb filters, if you prefer, as
used in the previous sections. This section pairs them various modula-
tions, usually generated by low-frequency oscillators. They add depth
and stereo breadth to a signal, or lend it a distinct flavor. Flanger and
chorus are the two main categories of modulated delay effects. The big
difference between the two is that a flanger thrives on short delay
times, usually less than 20 ms, while a chorus usually sweeps across a
wider range. Read on to learn more …

Conjuring a Flanger

Mixing two signals, one with several milliseconds of variable delay, cre-
ates a flanging effect. The two signals are out of phase, notching the
frequency spectrum at linearly spaced intervals. As delay time changes,
the notches sweep across the frequency spectrum, conjuring a comb fil-
69

Chapter 2 Designing VST Effects in SynthEdit

70
ter effect. For more emphasis, the output is often fed back to the input
to give rise to sharp resonant peaks in the frequency spectrum. Figure
2.50 is a spectrogram image of a flanger’s effect on white noise. The
light stripes are notches; the dark stripes resonant peaks.

Figure 2.50: A spectrogram of a flanger applied to white noise

The term flanger was coined in the mid 20th century, when two tape
machines played the same signal at the same time. An engineer placed
a finger on a tape reel’s flange, slowing one tape and throwing the two
out of sync. When the engineer released the reel, its speed gradually
returned to normal, evincing a groovy psychedelic whoosh.

Figure 2.51 shows the most rudimentary stereo flanger structure. Each
input channel feeds into a delay line, which then mixes with the dry
signal and notches the spectrum.

The delay lines’ delay time is 0.01, or 10 milliseconds. An oscillator
module puts out −5 to +5 volts by default. This setup adds 5 volts to
arrive at 0 to 10 volts to match the input range of the Delay2 module’s
Modulation plug. The Level Adj module scales the output signal,
thereby determining modulation depth. The Modulation plug’s value
changes constantly, so be sure to enable the delays’ Interpolate Output
option. This prevents the dreaded zipper noise and ensures a smoother
output signal. This prefab employs a triangle waveform for the LFO.

Tweak one oscillator’s Phase Mod plug to go stereo. Shifting the two
waveforms’ phases creates a wide-body stereo effect. 5 volts translate to
90 degrees, 10 to 180 degrees phase shift.

Modulated Delay Effects (Flanger, Chorus)
The oscillator’s pitch determines the modulation rate. In 1 Volt/Octave
mode, the voltage equivalent of 0.01 Hz is −10.4252 V, and 10 Hz is
−0.4594. So, the Rate plug’s lower and upper limits stake out a range of
0.01 to 10 Hz. Feedback slider’s range is −10 to +10 volts to accommo-
date negative feedback levels.

Heads up: For more frequency-to-voltage conversion rules, see the sec-
tions “Follow Up with an Envelope Follower” from page 38 onwards
and “Go Low by Adding an LFO” from page 40 onwards in this book, or
the section on voltage conversion in SynthEdit’s Help.

Figure 2.51: As simple stereo flanger (flanger1.se1)

Go-to files: flanger1.se1

Adding a Waveform Selector

Sine and triangle waves are the two most commonly used LFO wave-
forms. Saw and ramp waves also see some use, but pulse and noise
waveforms are rarely employed for LFOs. you may narrow down oscil-
lator waveform options. The Insert > Examples > Limiting List Choices
prefab is an example of how to limit an oscillator’s waveform selector
options using sub-control modules. Figure 2.52 maps the structure.

Figure 2.52: A prefab for limiting list choices
71

Chapter 2 Designing VST Effects in SynthEdit

72
The Patch Mem–List2 module converts the list input into a GUI list
value. The list is then converted to Boolean values (recall GUI plugs’
bidirectional data flow). The List to Bools module converts the Boolean
values back to a list plug, but addresses only options linked to it. If
desired, rename options by opening the Properties window of the List
to Bools module and changing the labels. The GUI list output connects
to a Dropdown List module, which is the actual GUI control feature.
We renamed the module in the example prefab List Entry2.

Figure 2.53

To add a left/right arrow similar to those found in the Controls > List
Entry2 module, simply copy the Bitmap Image, Float to Bool and
Increment2 modules from that prefab, and connect the Increment2
module to the List to Bools module’s List plug. Once you have config-
ured the container’s panel, the arrows let you quickly change options.
We connected a Text Entry2 module to the Name plug of the Patch
Mem–List2 to show a label for the list entry. If you wish, open the Prop-
erties window and select Read-Only mode to make the label readable
only. The Style option—as determined by the current skin’s global.txt
settings—changes the text’s appearance. Figure 2.54 illustrates the
structure. The flanger2.se1 prefab uses this waveform selector.

Figure 2.54: Limiting list choices with label and arrows

Go-to files: flanger2.se1

Modulated Delay Effects (Flanger, Chorus)
Making Modulation More Variable

The lowest modulation value in the previous prefabs is 0 volts. Some
users may hanker for different modulation ranges. Fulfill their wish by
adding a constant voltage to delays’ Modulation plug. Proceed with cau-
tion, for the two voltages’ sum may not exceed the Modulation plug’s
10-volt threshold. So, if you choose 5 volts as the Depth and Min slid-
ers’ upper limit and double the Delay2 modules’ max delay time, pull-
ing the Min slider down to 0 yields the same results. But the Modula-
tion plug’s value will not exceed 10 volts even with the Min slider pulled
all the way up, ensuring the plug-in remains stable at all settings.

Figure 2.55: Variable minimum delay time (flanger3.se1)

Go-to files: flanger3.se1

More About Flangers

Flanger modules may produce a loud low frequency hum at high feed-
back levels. Squeeze in a high-pass filter after the delay lines to fix this
problem. If the effect’s tone is too trenchant, tame a delayed signal’s top
end with a low-pass filter.

Switch the phase of the the delayed signal using an Inverter module to
conjure different sounds.
73

Chapter 2 Designing VST Effects in SynthEdit

74
Tweaking the GUI

So far, we used mostly standard Slider modules to control parameters.
The following example looks at how to fine-tune knobs and sliders’
readouts using sub-control modules. Figure 2.56 shows the outcome.

Figure 2.56: A sexier GUI with a more sophisticated readout (flanger4.se1)

The knobs base on the Knob prefab (Controls > Knob) depicted in fig-
ure 2.54. The heart of the prefab is the Patch Mem–Float module. The
Patch Mem module’s Min Value and Max Value plugs define the knobs’
low and high limits. The Animation Position plug connects to Bitmap
Image modules providing the knob view. The actual value goes to two
plugs—a GUI Float Value plug on the left, and a Float Value Out plug
on the right. The prefab employs a float Value Out plug to send the sig-
nal to a Float to Volts (Insert > Conversion > Float to Volts) module,
which converts the value to voltage. The Text Entry2 module merely
brandishes the label.

Figure 2.57: A knob sporting sub-controls

Modulated Delay Effects (Flanger, Chorus)
Use the Patch Mem’s GUI float Value plug to show readouts. Figure
2.59 illustrates the Depth knob’s structure. This setup first scales the
Value plug; then converts it to text for display. The knob’s range is 0 to 5
volts, or 0 to 10 milliseconds. Use a Float Scaler (Insert > Sub-Controls
> Float Scaler) module to scale the knob. The rule for scaling is:

This module is bidirectional, with the inverse function being:

Figure 2.58

We are using the inverse option. To multiply the Value Out by 2, go to
the Float Scaler’s Properties window and enter the inverse of 2, 0.5, for
the Multiply by plug. The Value In plug’s range is thus 0 to 10. A Text
To Float module converts these values to text displayed by a Text Entry2
module. Don’t forget the decimal places. Another Text Entry2 module
shows the unit of measure. You need a Patch Mem–Text module to
store the Text plug’s value, which is now ms. Then arrange labels and
readout on the container’s panel as depicted in figure 2.58. If necessary,
disable Edit > Snap to Grid to enable more precise positioning.

Value Out= Value In ∗ Multiply by + Add

Value In =
Value Out – Add

Multiply by
75

Chapter 2 Designing VST Effects in SynthEdit

76
Figure 2.59: The Depth knob’s structure

The same goes for all other knobs in this prefab—scale them; then dis-
play the GUI float value plug. The Rate plug is the sole exception; it
uses a third-party module to convert volts to frequency. Figure 2.60 out-
lines the structure. KDL Volts2Hz converts the output voltage to Hz.
Insert > Convert > Volts to Float then converts the Hz value to float,
and a Patch Mem–Float Out sub-control converts it to GUI float. This
sub-control provides the value in GUI float plug format for conversion
to text and display. The unit may connect to the Patch Mem–Float Out
module’s Name plug. Once you configure the readout, it shows you the
LFO’s exact frequency in Hertz.

Figure 2.60: Structure of the Rate knob

Modulated Delay Effects (Flanger, Chorus)
Go-to files: flanger4.se1

Cooking Up a Chorus Effect

A chorus’ structure is much the same as a flanger’s, apart from a few
differences. For one, the chorus’ delay is longer, usually around 20 to
30 ms. For another, chorus plugs usually do without feedback, though
you are free to create experimental effects with longer delays and feed-
back. Finally, flangers often use one (mono) or two (stereo) delay lines;
choruses may use four, six, or even more delay lines (voices) to fatten
up to the sound.

Our flanger prefab is a good place to start. First, we’ll change delay
modules’ delay time to 0.06, or 60 ms. Now adjust the Min and Depth
knobs accordingly so they give us the right readout. Setting the Multi-
ply by value to 0.166667 multiplies the 0-to-5 volts range by 6, yielding a
readout of 0 to 30 ms.

Figure 2.61

For the sake of convenience, we dumped the delay lines with the oscil-
lators in a container called 2 Voice Chorus. Copying this container adds
two voices to the chorus. Figure 2.61 pictures the container; figure 2.62
the structure.

Figure 2.62: The two delay lines with LFOs inside a container
77

Chapter 2 Designing VST Effects in SynthEdit

78
The controls connect to container plugs rather than modules. Check
out chorus2.se1 for the full structure.

Go-to files:
chorus1.se1
chorus2.se1

Adding Two More Voices

More voices add girth to the sound. To add two, copy the 2 Voice Cho-
rus container and connect the controls to the appropriate plugs. You’ll
find this structure in figure 2.63. The inputs connect to both two-voice
chorus containers’ inputs, with their outputs being mixed in the cross-
faders’ Input A plugs.

Figure 2.63: A chubby four-voice chorus

Different phases beef up the sound. Add a constant voltage to the oscil-
lators’ Phase Mod plug in the second dual-voice chorus. We added 10
volts in this prefab, as highlighted in figure 2.64. This shifts the phase
180 degrees, putting the two-voice pairs in opposite phase. Feel free to
adjust the value or add a manual control.

Modulated Delay Effects (Flanger, Chorus)
Figure 2.64: Shifting the LFOs’ phase

Go-to files: chorus3.se1

Switching Voices Off

Sometimes, four voices is overkill, so a switch between two and four
voices comes in handy. Though you have several options, the best way
to conserve CPU resources is to switch voices off before they enter the
container. We will use Switch (Many → 1) modules for the second pair
of voices. When “2” is selected from the list, a Fixed Values module
feeds a constant 0 volts to the container’s input, putting the container
to sleep. When “4” is selected, the main input provides the signal, add-
ing two voices to the wet sound. That’s all it takes to conveniently
switch between two and four voices.

Figure 2.65: Here’s how to silence the voices in a chorus effect
79

Chapter 2 Designing VST Effects in SynthEdit

80
Go-to files: chorus4.se1

Phaser Effects

Phasers are like flangers, the main difference being that all-pass rather
than comb filters carve notches and peaks into the spectrum. Though
built-in and third-party all-pass filters are available, SynthEdit’s con-
straints preclude real feedback. The good news is that third-party
phaser modules and other filter types can simulate phasers’ peaks and
notches.

Phaser Variation 1

Our first version employs all-pass filters. Rather than changing the fre-
quency spectrum, all-pass filters distort the incoming signal’s phase.
Take, for example, a sine wave. Applying an all-pass filter to it yields a
sine wave of the same amplitude, but with a different phase deter-
mined by the sine wave’s frequency. Different frequencies’ phases shift
differently. So, how do we notch the frequency spectrum if it remains
unchanged? By mixing the wet and dry signal. Frequencies with oppo-
site phases cancel each other out, cutting notches into the spectrum.
The number of all-pass filters in the chain determines the number of
notches.

The first example features a third-party module, EVM All-pass. On the
upside, it does not hog as much CPU as the in-built all-pass filter. On
the downside, it produces aliasing noise when modulated too fast
because it updates filter coefficients less frequently. It will do for stan-
dard phaser modulation rates, though. A dual-stage phaser unit looks
something like the setup in figure 2.66. The signal passes through two
serial all-pass filters, and then mixes with the original signal.

Figure 2.66: A two-stage phaser

Phaser Effects
We created similar containers with two, four, six, and eight serial all-
pass filters to enable stage selection. A 1 → Many switch selects the
number of stages. Figure 2.67 shows this structure.

Figure 2.67: Selecting stages using a switch

Figure 2.68 outlines the main structure with two LFOs and controls
much like those in the previous prefabs. A center knob with a 0 to 5 V
range selects the center frequency. The two LFOs modulate the all-pass
filters’ pitch, creating the sweeping effect.

Figure 2.68: The phaser prefab’s main container

Heads up: Swap the Channel1 and Channel2 containers for EVM
Phaser modules, if you wish. They offer all-pass filters and let you
select stages and control other parameters. See phaser2.se1 to learn
more.

Go-to files:
Phaser\phaser1.se1
Phaser\phaser1.se1
81

Chapter 2 Designing VST Effects in SynthEdit

82
Phaser Variation 2

The above prefabs simply notch the spectrum; they can’t generate real
feedback. But there are other ways to fake it. This example uses state
variable filters to put notches and peaks in the spectrum, serving up a
sound very much like a phaser. The trick is to subtract the high-pass
output from the state variable filter’s low-pass output, creating a reso-
nant peak as well as phase distortion. Then if you route more of these
filters in parallel, the phase cancellations create notches between the
peaks as shown in figure 2.69—great for simulating a phaser’s whoosh.

Figure 2.69: Parallel peak filters

Figure 2.70 pictures the Peak container’s plumbing, whereby the Hi
Pass out is subtracted from the Low Pass out.

Figure 2.70: The Peak container’s internal structure

A switch similar to the previous prefab’s determines the number of
stages. Each container holds parallel peak filters as depicted in figure
2.71. The fixed values add offset to the pitch, spreading the peaks in the
frequency spectrum. The Multiply module scales the output, as the par-
allel filters boost the level.

Phaser Effects
Figure 2.71: Parallel peak filters spread

The external structure mirrors the previous prefab’s, except that here a
Feedback knob controls the filters’ resonance amount. Open the Feed-
back knob’s structure and you will see how Subtract and Level Adj mod-
ules shape the output signal. All they do is calculate 1 – (1 – x)2 to
change the resonance curve. Though not strictly necessary, this makes
it easier to adjust the feedback amount. Figure 2.72 graphs this curve
for you.

Figure 2.72: Resonance curve

See phaser3.se1 for the full structure. This effect’s feedback emulation
sounds rather sweet. Note that the notches’ depth corresponds to the
feedback amount.
83

Chapter 2 Designing VST Effects in SynthEdit

84
Heads up: State variable filters are all-pole filters, meaning they boost
high frequencies near Nyquist, possibly eliciting high-frequency ring-
ing. Prevent this by limiting the phaser’s maximum pitch.

Go-to files: Effects\Phaser\phaser3.se1

Equalization

Equalizers feature prominently in most audio applications. The term
dates back to bygone days when filters compensated certain frequen-
cies’ attenuation in electronic equipment to elicit linear frequency
response. Today equalizers serve many different purposes. They do
things like adjust a boom-box’s tone, boost certain frequencies of an
instrument to make it stand out in the mix, and cut low frequency hum
or noise. Shelving and peaking filters are the most common types.
Shelving filters boost or attenuate frequencies below or above a speci-
fied cutoff frequency. Audiophiles call them low-pass shelving or low-
shelf and high-pass shelving or high-shelf filters. Peaking or peak EQ
filters attenuate or boost a narrow frequency band surrounding the cut-
off frequency, leaving the remainder untouched. The Q factor or filter
bandwidth determines the frequency band’s width. Figure 2.73 charts
some typical response curves. Conventional low-pass, high-pass, and
notch filters also serve to equalize.

Figure 2.73: Low-shelf, peaking and high-shelf filters’ response curves

Though there are many types of equalizers, for our purposes they come
in four major categories. One comprises tone controls with fixed fre-
quency bands for bass, midrange and highs like the equalizers on mix-
ing desks and DJ gear.

Equalization
Graphic equalizers make up the second category. They have several—
usually from seven to 31—equally spaced, fixed frequency bands. On
the upside, they offer far greater flexibility for shaping tone; on the
downside, their bands’ frequency and width are fixed.

Parametric or paragraphic equalizers are the third category. Featuring
several bands with adjustable center frequency and bandwidth, they are
by far the most versatile.

In the fourth category we find dynamic equalizers. With one foot
planted in the dynamic processor camp and the other among equaliz-
ers, they respond differently to different input levels.

Now let’s look closer at these different breeds of EQ.

Three-band Tone Controls

Welcome to tone controls, our first group of equalizers. The least flexi-
ble of the bunch, they offer just three fixed bands—low, mid, and high.
Some mixing consoles feature adjustable midrange frequencies, that is,
a sweepable (semi-parametric) equalizer. Frequencies vary with applica-
tion and manufacturer. The low band is usually a 40 to 80 Hz shelving
filter, the mid band is a peak EQ around 1.3 to 2.6 kHz, and the high
band is a shelving filter around 12 to 15 kHz. We opted for 80 Hz,
2.5 kHz, and 12 kHz. Sadly, SynthEdit version 1.015 lacks shelving/
peak filters; happily, great third-party modules are available. We’ll bor-
row David Haupt’s DH_BiquadFilter. It features shelving and peak fil-
ters alongside conventional low-pass, band-pass, high-pass, and notch
filters.

DH_BiquadFilter sports two input modes, selectable in the preferences
window. SE 0–10 volts mode enables the tried-and-true 0-to-10 volt
range. The Hz/Octave/dB range specifies values in Hertz, octaves, and
decibels. The last sounds good to us.

Creating the three bands is sooner done than said. First line up three
Bi-quad filters in series. Set the low band filter to a low-shelf, 80 Hz fre-
quency. Set the mid band to EQ Peak, and its frequency to 2500. The
midrange’s bandwidth is a matter of taste; this prefab uses 4 V (4
octaves) for a 625-to-10,000 Hz range. The effect is strongest at
2500 Hz, with a bell-like curve dropping off towards the band’s corner
frequencies. Set the third filter to high-shelf, and its frequency to
12,000. The Gain plugs determine boost and attenuation in decibels.
Figure 2.74 outlines the structure of a mono three-band equalizer.
85

Chapter 2 Designing VST Effects in SynthEdit

86
Figure 2.74: A simple 3-band tone control

Heads up: The DH_BiquadFilter module has a parameter named
Quality with two settings, Economy and Fast Modulation. In Economy
mode, filter coefficients are rarely updated, sparing CPU power. Modu-
lating settings very fast can cause aliasing noise. We used Economy
mode for this structure, but please use the other setting for prefabs
enabling fast modulation.

Go-to files: 3band1.se1

Graphic Equalizers

You may add bands for greater flexibility. Graphic equalizers usually
feature seven to 31 equally-spaced frequency bands. The more bands,
the more precisely you can shape sound. Different equalizers use dif-
ferent frequency settings, but frequency bands are usually spaced
equally along a logarithmic scale. Two methods determine the ratio of
two neighboring bands. The base 2 method in 1/N octave mode is:

UpperBand = BaseFreq ∗ 2 1⁄N

LowerBand = 1⁄N

BaseFreq
2

Equalization
The other method arrives at the center frequency using powers of 10.
The 1/N octave mode rule is:

Though the two methods yield slightly different results, they are practi-
cally the same. An ISO standard lists a number of preferred center fre-
quencies. Many graphic equalizers, both software and hardware, use
them. Table 2.1 lists these frequencies.

Table 2.1/a. ISO preferred frequencies for one octave mode

Table 2.1/b. ISO preferred frequencies for 1/2 octave mode

Table 2.1/c. ISO preferred frequencies for 1/3 octave mode

In the following example, we will create a ten-band, one-octave graphic
equalizer. Though you can use band-pass and peak filters to do this, our
example employs peaking EQ filters. Each channel uses ten
DH_BiquadFilter modules in serial array. Input modes are set to Hz/
Octave/dB, and center frequencies are set according to Table 2.1/a. On
both sides, a Slider connects to the Gain plug, with a range of −12 to
+12 V. A Level Adj module for global gain adjustment sits in front of
the output. Figure 2.75 shows the structure.

16 31.5 63 125 250 500 1000 2000 4000 8000 16000

16 22.4 31.5 63 90 125 180 250 355 500

710 1000.0 1400.0 2000 2800 4000 5600 8000 11200 16000

16 20 25 31.5 40 50 63 80 100 125

160 200 250 315.0 400 500 630 800 1000 1250

1600 2000 2500 3150.0 4000 5000 6300 8000 10000 12500

16000 20000

UpperBand = BaseFreq ∗ 10 N⁄10

LowerBand = N⁄10

BaseFreq
10
87

Chapter 2 Designing VST Effects in SynthEdit

88
Figure 2.75: Ten-band equalizer (eq10-1.se1)

Heads up:
❖ Chose peak filters’ bandwidth carefully. Different methods serve to

set bandwidths, the most common being proportional-q (variable-q)
and constant-q. The constant-q method adjusts the bandwidth for
different gain settings to curb cross-talk between bands. The above
structure is a classic proportional-q equalizer. If bandwidth is too
narrow, a high-gain boost will yield a resonant sound. When boost-
ing adjacent bands, narrower bandwidth may introduce ripple. If
bandwidth is too broad, you will get more band interaction. 1.3
octaves is a good choice of amount. That way, when you boost two
adjacent sliders by +12 dB, band interaction boosts total gain to
about +17 dB.

❖ A greater slider range also increases ripple, so don’t go beyond a
12-dB boost.

Go-to files: eq10-1.se1

Equalization
Adding Stereo Controls with Link Switch

Add another group of sliders to the second channel if you wish to build
a stereo EQ. Many plug-ins offer automatic channel linking for conve-
nience. SL Slider Linker is a third-party sub-control module that does
this. Setting the Link GUI Bool plug to True links Slider 1 and Slider 2
plugs’ values. Change one, and the other changes accordingly. Figure
2.76 depicts a structure with two linked sliders.

Figure 2.76: A structure with two sliders using SL Slider linker

Each slider has a Patch Mem–Float module assigned, but the SL Slider
linker connects the Animation Position knob to the Joystick Image. Set-
ting the container’s Link plug to True prompts the Slider Linker to link
the two sliders’ position.

A Joystick Image lets you create a slider animation in SynthEdit. It pro-
vides the slider’s knob animation, while the Bitmap Image supplies the
background. This prefab requires two custom skin features,
vslider_med_handle.png and vslider_med_back2.png, found on
www.wizoobooks.com/synthedit. Please copy them to the skin folder
before loading this prefab. These images base on the default vertical
slider; skin and customize them as you wish. For more information on
how to use the Joystick Image, please refer to the section “Joystick
Image” on page 213.

The usual suspects make up the other features in this prefab. Float to
Volts sliders’ connects the Position sliders to voltage. Text To Float and
Text Entry2 modules display the readout and frequency. We placed one
slider below another in the GUI. Figure 2.74 shows their structure.
89

http://www.wizoobooks.com/synthedit

Chapter 2 Designing VST Effects in SynthEdit

90
Figure 2.77: Linked sliders

The switch bases on the Controls > Switch prefab. Figure 2.75 maps its
structure. Rather than using a Patch Mem module for animation, we
opted for a Float to Bool module to convert the switch’s status to a GUI
Bool value. The Text Entry2 with the Patch Mem merely labels the
switch. GUI plugs connect to just one GUI Bool plug. This means we
need a Bool Splitter (Insert > Sub-Controls > Bool Splitter) module to
connect the Link plug to all the sliders.

Figure 2.78: Link switch

Linkable sliders connect to the left and right channels’ Gain plugs. Fig-
ure 2.79 illustrates the user interface.

Heads up: Add meter modules to monitor input/output signal levels
(Controls > Peak Meter), if you wish.

Go-to files: Effects\Equalizer\eq10-2.se1
Effects\Equalizer\Skin files\vslider_med_handle.png
Effects\Equalizer\Skin files\vslider_med_back2.png

Be sure to copy the png files to the actual skin folder.

Equalization
Figure 2.79: A stereo ten-band equalizer’s interface

Parametric Equalizers

Parametric equalizers afford users great flexibility, enabling them to
adjust equalizer bands’ center frequency and bandwidth. Some para-
metric equalizers also feature different filter types ranging from low-
pass and high-pass to shelving and peaking filters. The following exam-
ple shows you how to create a four-band parametric equalizer with one
low shelf, one high shelf and two peaking bands.

This example uses DH_BiquadFilter modules much like those in the
previous prefabs. Four filters are arrayed serially for each channel, all
operating in Hz/Octave/dB mode. One is configured as a low shelf,
another as a high shelf, and two more in EQ Peak mode. The controls
are also akin to the previous prefabs’. Gain ranges from −18 to 18 dB;
bandwidth is specified in octaves. Frequencies range from 20 Hz to
20 kHz, which equals low and high knob values of 0.5405684 and
10.506353, respectively. The KDL Volts2Hz module converts these val-
ues to Hz. Figures 2.80 and 2.81 show the structure and user interface.

Heads up:
❖ Add bands for more precise control. This ups the CPU load, so if

you use many bands, equip them with On/Bypass switches. See the
section “Optimizing Effects” on page 185 to learn more.

❖ Add filter type selectors for each band if you wish to afford users
even greater flexibility.

Go-to files: Effects\Equalizer\eq_para4.se1
91

Chapter 2 Designing VST Effects in SynthEdit

92
Figure 2.80: A four-band parametric equalizer’s structure

Figure 2.81: A four-band parametric equalizer’s user interface

Dynamic Processing
Dynamic Processing

These processors shape a signal’s dynamics and dynamic range. Com-
pressors, limiters, expanders, and gates are most common types. This
book’s scope is limited to explaining compressors and limiters, but
expanders and gates’ structures are very similar.

Compressors limit a signal’s dynamic range, reducing its amplitude
above a given threshold value. Sometimes called make-up gain, a gain
control boosts the softer parts of the signal. A ratio control adjusts the
compression amount by determining the ratio between input and out-
put levels. Set ratio to 2:1, and the compressor halves signal levels
above the threshold. Figure 2.82 graphs some compressor/limiter
transfer curves. Any ratio above 10:1 constitutes limiting. Peak limiters’
ratio is generally infinite to 1. This equates to hard clipping, strictly
maximizing the output level.

Figure 2.82: Compressor/limiter transfer curves

Figure 2.83 outlines the general scheme of a dynamic processor. You
see two paths in the diagram. The detection path determines the peak
or RMS level, and calculates the amount of gain reduction, which the
processor then applies to the main path.

Figure 2.83: Dynamic processors work like this
93

Chapter 2 Designing VST Effects in SynthEdit

94
Compressors’ level detectors sport two controls, attack and release.
Attack determines how fast the compressor cuts the gain when it
detects a signal level exceeding the threshold. The release value deter-
mines how fast the signal returns to its original level once it drops back
below the threshold. Peak limiters’ response to sudden peaks must be
instantaneous, so hard limiters only have a release control.

Setting Up a Simple Peak Limiter

Figure 2.84 captures the structure of a simple peak limiter in all its sig-
nal-routing glory. The Pregain knob adjusts the incoming signal level.
A DH_Max module available from David Haupt’s BasicModulePak
takes the louder of the two channels, linking the left and right chan-
nels’ gain reduction to preserve the stereo image. This signal then goes
to the level detector, a Peak Follower (Insert > Modifiers > Peak Fol-
lower). The Attack plug’s value is 0 volts, ensuring it responds immedi-
ately to sudden peaks. The Release knob adjusts the limiter’s decay
rate. The Attack/Decay knobs’ range is 1 V/20 ms, and the readout is
scaled accordingly.

A word on the Release knob: The Multiply module squares the voltage
before feeding it out. This means the knob’s scale is exponential; well,
sort of. In any case, it brings greater definition to low release times. To
set the high and low values, enter the target values’ square roots to the
Min Value and Max Value plugs.

Figure 2.84: A simple peak limiter’s structure (limiter1.se1)

Dynamic Processing
Once the compressor detects the peak, David Haupt’s
DH_VoltageTodB module converts the level to decibels. Dynamic pro-
cessors generally work with decibels rather than linear voltages.
Though not compulsory for peak limiters, it does make levels easier to
handle.

Then the compressor subtracts the threshold value from the decibel
level. If the level lies above the threshold, positive values give the gain
reduction in decibels. Negative voltages are a no-go, so a Clipper (Insert
> Effects > Clipper) module clips negative voltages to 0. The compres-
sor then inverts the gain reduction value to apply it to the main signal.
The formula for this is:

The peak meters show the actual levels to help users keep track of the
signal’s status. We used the Peak Meter2 prefab from the Insert > Con-
trols menu. Note that the prefab’s Volts to Float module converts the
level to animation. Open this module’s Properties menu and you will
see two settings, Response and Update Rate. In/Out peak meters
employ a dB peak setting with fast response. The Gain Reduction
meter uses volts DC (Fast), because the signal is already in decibels.
The prefab converts the two channels to mono before displaying
meters.

Heads up:
❖ Lowering the release value increases harmonic distortion. Set

release to 0, and the limiter behaves like a hard-clipping distortion
module. You may want to limit the release parameter’s low value to
prevent this. This prefab’s low value is 1 ms. Extreme settings may
elicit serious distortion.

❖ The Peak Limiter in version v1.0150 may “leak” signals at very high
levels and low release rates, possibly causing more clipping and dis-
tortion.

Go-to files: Effects\Dynamics\limiter1.se1

GRdB = – max (lndB – ThrdB,0)
95

Chapter 2 Designing VST Effects in SynthEdit

96
Putting Together a Peak Compressor

A hard-knee peak compressor is much like the limiter shown above.
Figure 2.85 depicts the structure. You’ll find some differences, though.
An Attack knob adjusts how fast the compressor responds to signals
above the threshold. The Gain knob connects to the Level Adj module
for the main signal, which lets the user dial in post compression make-
up gain. The Ratio knob adjusts the amount of compression.

Figure 2.85: A hard-knee peak compressor (compressor1.se1)

The compressor does nothing to the sound at a 1:1 Ratio knob setting.
Set it to 1:20, and you will dial in some serious compression. This
structure takes the ratio value’s reciprocal, and then subtracts it from
one, yielding a value ranging from 0 (1:1) to 0.95 (20:1). The compres-
sor multiplies the difference between input level and threshold by this
value. This is how the Ratio setting determines the amount of gain
reduction. The equation goes like this:

Go-to files: Effects\Dynamics\compressor1.se1

GRdB = – max (lndB – ThrdB,0)
Ratio

1∗ 1 – ⎜
⎠
⎞⎜

⎠
⎞

Dynamic Processing
Adding an RMS Level Detector

Up to this point, our level detector focused on signal peaks to create
peak limiters and peak compressors. But some users may wish to
detect overall loudnes rather than peaks. RMS (Root Mean Square) fre-
quently serves this end, making the level detector behave more like the
human ear. RMS entails taking the square of N input samples, the
mean (average), and then the square root. Stated mathematically, this is

How to Average

Two methods serve to compute a signal’s average, moving average, and
infinite impulse response filters. A moving average filter takes the
weighted sum of N inputs. An infinite response filter takes the
weighted sum of inputs and outputs. We’ll use the latter.

The impulse response of a first-order IIR filter like the 1 Pole LP filter
in SynthEdit is an exponentially decaying signal, so recent samples are
given more weight. In reality, though, response is endless, hence the
name infinite impulse response. A one-pole filter’s time constant is the
time it takes to reach the level of 1/e, or about 37 % of the original level.

Now let’s do the math for a one-pole filter. The equation for calculating
a signal is:

The relationship between a and the one-pole filter’s time constant:

Here t is time constant in seconds, and fs the sampling frequency. The
relationship between a and the cutoff frequency is:

xrms =
N

x2 + x2 + … + x2

N
1 Σ

N

i=1
x2

i = 1 2 N

y [n] = (1−a) ∗ x[n] + a ∗ y[n−1]

a =
e f s t

−1

a = e (–2 ∗ pi ∗)
f

fs
97

Chapter 2 Designing VST Effects in SynthEdit

98

It follows that the mathematical relationship between the filter’s time
constant and frequency is:

Here t is the time constant in seconds. So, if we want an averaging filter
with a time constant of 1 ms, we can use a 1 Pole LP filter with a 159-
Hz cutoff frequency.

Figuring Out RMS

The setup in figure 2.86 performs an RMS calculation. It squares the
signal, and then averages it using a 1 Pole LP filter. Equation 1 is the
reference for setting the filter’s frequency. Then it takes the square root.
Figure 2.87 shows the square root structure.

Figure 2.86: Calculating RMS

We used a Waveshaper2 module to calculate the square root, which can
apply any transfer curve to a signal. In essence, it is a wavetable with a
arbitrary mathematical function. However, its input signal range is lim-
ited to

−

5 to

+

5 volts. The compressor’s input value usually ranges from

−

10 to

+

10 volts, so the square will lie in the 0-to-100-volt range. Divid-
ing it by 10 and subtracting 5 scales it to

−

5 to

+

5 volts. After this, we
use the function

sqrt((x + 5)/10)

∗

10

. The

x

 variable represents the
input value; the other operations serve to scale it. This structure pro-
vides the square root of voltages between 0 and 100 volts.

 Figure 2.87: Calculating the square root

f =
2π t

1

Dynamic Processing

Heads up:

Feel free to also use Oli Larkin’s OL_Squareroot module to
compute a signal’s square root.

Adding an RMS Level Detector to the Compressor

Now that we have prefabs for calculating RMS level, we can add a selec-
tor for detecting peak/RMS levels. See figure 2.88 for its structure.
Depending on the choice, the peak or RMS value goes to the DH_Max
module, and then to the Peak Follower module for adjusting Attack/
Release settings.

Figure 2.88: A switchable peak/RMS level detector

The RMS detector’s time constant is somewhat of an arbitrary choice.
Plug-ins use values ranging from one to 30 ms. The lower the time con-
stant, the more sensitive the compressor is to sudden peaks. At very
low time constants, the RMS detector behaves almost like a peak detec-
tor. This structure uses a 3-ms time constant. To this end, we set the
one-pole filters’ cutoff frequency to

1/(2

∗

π

∗

 0.003) = 53 Hz

.

Go-to files:

Effects\Dynamics\compressor2.se1

Creating a Soft-knee Compressor

Though we’ve discussed hard-knee dynamic processors, let’s back up a
bit to find out what a knee is and how it affects sound. Check out the
two curves in figure 2.89. One bends hard at the threshold level. Com-
pressors with this type of transfer function are called hard-knee com-
pressors. The dotted line is a smooth curve called a soft knee. Compres-
sors with this transfer function are called soft-knee compressors. A
soft-knee compressor’s gain reduction kicks in at a very low ratio a few
dBs below the threshold. As the signal approaches the threshold, the
99

Chapter 2 Designing VST Effects in SynthEdit

100

ratio increases until it arrives at the threshold. This transfer function
comes courtesy of analog circuitry, where diodes do this smoothly.
Many plug-ins offer soft-knee compression because it sounds more
musical. So let’s create a soft-knee compressor.

Figure 2.89: Soft and hard knee compression

In our earlier examples, the Clipper module shaped the transfer curve
shown in figure 2.90. Above 0, the output level equals the input level.
Below 0, the output level is 0. Smoothing out this curve with a knee
replacing the sharp corner changes the compressor’s characteristic.

Figure 2.90: Transfer curve of a Clipper module

Let’s use a Waveshaper2 module to this end. Note figure 2.91. We
employed an exponential function in conjunction with min() and abs()
functions to create the curve. Use this structure in the Clipper mod-
ule’s stead to endow the compressor with soft knee. The Multiply mod-

Dynamic Processing

ules scale levels so that one volt equals 10 dB. The knee spans from
about

−

15 to

+

10 dB around the threshold. Though not much of a
range, it is just enough to smooth the sound a touch. Subtract this
function from

x

 to arrive at the transfer curve shown in figure 2.91.

Figure 2.91: A soft-knee prefab showing the transfer curve

To let users choose between a soft and a hard knee, add a structure with
switches rather than the Clipper module. See figure 2.92 for a structure
that selects the type of knee. It sports two switches, 1

→

Many and
Many

→

1. Here’s why: When the 1

→

Many switch selects a hard knee,
the modules in the soft-knee container go to sleep. Yet they continue to
issue residual constant voltage from previous calculations. A second
switch prevents this constant voltage from influencing the sound. Usu-
ally 1

→

Many switches are preferable, this being an exception. To learn
more about optimizing patches, see the chapter “Making the Most of
Performance” from page 181 onwards.

Figure 2.92: Soft/hard knee selector

Now you are the proud owner of a flexible compressor/limiter plug-in
with variable knee and switchable peak/RMS level detection. Figure
2.93 pictures the GUI.
101

Chapter 2 Designing VST Effects in SynthEdit

102

Figure 2.93: The compressor’s user interface

Go-to files:

Effects\Dynamics\compressor3.se1

Heads up:

Use a Waveshaper module in place of Waveshaper2, and
you can create just about any transfer function.

Getting Down and Dirty with Distortion Effects

For decades, musicians have been throwing some grit in pop music’s
gears with distortion and overdrive. This usually involves slapping
some kind of transfer function (wave-shaping) on the incoming signal
to generate new harmonics. The most common distortion types are
hard-clipping, soft distortion (or overdrive), and fold-back distortion.
Hard clipping limits signal to a certain level, chopping off whatever lies
above it. This is common practice among transistors and operational
amplifiers. Soft saturation also affects high signal levels, but the wave-
form retains some of its original characteristic. In analog circuits, vac-
uum tubes or diodes create this type of saturation. Vacuum tubes’ dis-
tortion is often asymmetrical, meaning positive and negative voltages
are affected differently.

Figure 2.94 charts a sine wave. The dotted line represents the same
wave with soft distortion. The dashes represent the wave clipped hard
at 0.5 and

−

0.5.

Getting Down and Dirty with Distortion Effects

Figure 2.94: Distortion curves

Hard-clipping generates oodles of harmonics; the waveform all but
resembles a square wave. Figure 2,95 shows these harmonics in a fre-
quency analyzer. Here a 1 kHz sine wave is clipped at 2.5 and −2.5 V,
creating beau coup harmonic content above 1 kHz.

Figure 2.95: Harmonic distortion generated by hard-clipping

Hard Clipping

A Clipper (Insert > Effects > Clipper) module like the one above can
serve to clip signals hard. Hi Limit and Lo Limit plugs determine maxi-
mum and minimum levels. The basic setup in figure 2.96 yields hard-
clipped distortion. This setup boosts the level high enough to clip the
signal. The Threshold knob adjusts the Clipper module’s high and low
limits. It converts the dB value to voltage using a DH_dBToVoltage
module, and inverts it for the negative limit.
103

Chapter 2 Designing VST Effects in SynthEdit

104

Figure 2.96: Hard-clipping

Go-to files: Effects\Distortion\hardclip1.se1

Soft Clipping

SynthEdit affords you many options for configuring a soft-clipping
setup. Your choices are dedicated third-party modules such as sc:Soft-
Drive and DH_SoftDist, Waveshaper modules, and polynomial distor-
tion. Figure 2.97 portrays one soft-clipping setup. A Waveshaper2 mod-
ule provides distortion by way of a tanh() trigonometric function. This
setup is very similar to the internal structure of the DH_SoftDist mod-
ule. You may change the transfer function or replace the Waveshaper2
module with a Waveshaper enabling any transfer function, including
asymmetrical.

Figure 2.97: Soft clipping

Go-to files:
Effects\Distortion\overdrive1.se1
Effects\Distortion\overdrive2.se1

Getting Down and Dirty with Distortion Effects

Fold-back Distortion

Those of us who are slavishly devoted to digital synths love fold-back
distortion waveshapers because they are so easily realized with soft-
ware. A fold-back effect inverts or folds back signal levels extending
beyond a certain threshold. This conjures a distinct sound with flavor
much like frequency modulation or phase modulation synthesis.
Though third-party modules (RH-Fold-back, RH-Fold-back2) do this,
using a Waveshaper2 module is an easy option. Enter

to Waveshaper2 to fold back all signals twice. Figure 2.98 shows the
structure with the transfer curve. Note the absence of distortion in the
−1.25 to 1.25 V range. Multiplying the input by 0.25 scales −5 to 5 volts
to this range. Subtracting 12 dB from the Drive amount yields similar
results because 10–12/20 = 0.2511.

Figure 2.98: Fold-back distortion

You may use a sine function to soften the fold-back. If you introduce
the function

Figure 2.99

3.75 ∗ (abs(−abs(−abs(x+1.25)+2.5)+2.5)−1.25)

5 ∗ sin(x ∗ 1.5)
105

Chapter 2 Designing VST Effects in SynthEdit

106
… the Waveshaper first provides soft distortion, then folds the signal
back in a soft curve twice, and finally clips it to ±5 volts. Presto, there
you have your all-purpose sound softener. Figure 2.99 charts the trans-
fer curve. To fold back the signal softly just once before clipping, use:

Go-to files:
Effects\Distortion\fold-back1.se1
Effects\Distortion\fold-back2.se1
Effects\Distortion\fold-back3.se1

What’s Up with Aliasing?

Let’s look at what happens to high frequencies during distortion. The
curly line in figure 2.100 shows the spectrum of a 16 kHz hard-clipped
sine wave, creating lots of upper harmonics. These harmonics should
all lie above 16 kHz, so you wouldn’t expect to see anything below this
frequency. But the frequency analyzer detects plenty of frequencies
with significant amplitude below 16 kHz, down to about 400 Hz.

Figure 2.100: Aliasing

So, where do these frequencies come from? The answer lies in the
Nyquist-Shannon sampling theorem. It states that the frequency band-
width equals half of the sampling frequency. Dividing the sampling
rate by 2 gives you the Nyquist frequency. The highest frequency at
48 kHz is thus 24,000 Hz. Now if you sample a signal with a frequency
higher than the Nyquist, this frequency aliases back to the spectrum. In
other words, frequencies above the Nyquist are mirrored below it, cre-
ating a signal with another frequency. Case in point: If we wish to sam-
ple a 28 kHz signal at a 48 kHz rate (and 24 kHz bandwidth), we will
create a 20 kHz signal instead.

5 ∗ sin(x ∗ 0.9)

Getting Down and Dirty with Distortion Effects
Picture a John Wayne movie. He’s on a stagecoach, with the wagon
wheels turning. As the wagon speeds up, there comes a point when the
wheels appear to spin backwards, yet the wagon continues moving for-
ward. The same phenomenon is at work here. The wheels are spinning
faster than the camera’s 30 frames per second can capture. The same
goes for signals above the theoretical limit. They are simply mirrored
back below the Nyquist frequency.

Though the process is called aliasing, to us it means noise. It adds
nasty high-end frequencies to the original signal. Generally undesir-
able, aliasing commonly occurs when distorting or shaping the wave of
a signal. In the above example, clipping generated harmonics above
16 kHz. Many lay above the theoretical 22 kHz limit, so they were mir-
rored back to the frequency spectrum, creating that mess below 16 kHz
in figure 2.100.

There are two prevailing ways of reducing aliasing. One entails re-sam-
pling the signal to a higher rate using interpolation filters. Then you do
your wave-shaping, filter out the harmonics above the original Nyquist,
and finally down-sample the signal to the original rate. Neither Synth-
Edit nor most native and custom modules offered this option at the
time of writing. So you’ll have to fall back on another approach.

Aliasing largely takes place in the high frequency spectrum; using a
low-pass filter to cut high-end frequencies helps reduce aliasing noise.
Applying distortion judiciously also limits this noise. A post-distortion
low-pass is an option, but rather than preventing aliasing noise out-
right it merely filters some of it.

Adding Filters to the Sonic Equation

You may add filters to shape timbre. Removing low frequencies often
improves overall performance, and lends the sound a different flavor.
Filtering out high frequencies is a good option because this reduces
aliasing noise. In the following example, we will use simple cascaded
one-pole, low-pass and high-pass filters to cut out the low end and
smooth out the top end. A peak EQ boosts a selected frequency pre dis-
tortion to add a pinch of sonic spice similar to a resonant filter effect.
This prefab features three distortion types—hard-clipping, overdrive
and fold-back distortion, switchable via the Type switch. The Drive
knob adjusts the distortion amount; the Post Gain knob adjusts the out-
put level.
107

Chapter 2 Designing VST Effects in SynthEdit

108
Heads up:
❖ Add a low-pass post-filter to smooth high frequency harmonics cre-

ated by distortion.

❖ Some plug-ins drop a band-pass filter in front of the distortion unit
to shape timbre. It’s also good for reducing aliasing.

❖ Some plug-ins use combinations of different distortion types to con-
jure distinct sounds.

❖ Post-equalization gives users another sound-sculpting tool.

Go-to files: Effects\Distortion\distortion1.se1

Figure 2.101: Distortion with filters (distortion.se1)

Getting Ugly with Lo-fi Effects

With up to 192 kHz sample rate and 24 bit depth, modern-day worksta-
tions sculpt sound with surgical precision. Back in the digital audio
Stone Age, hardware and software capabilities were far more primitive.
Sampling rates of 16, 10, or 8 kHz, sometimes with 12 or 8 bit depth
were the norm. If you want to let your users get down dirty, help them
recreate these lo-fi sounds with re-sampling or bit reduction.

Figure 2.102 depicts a simple re-sampler based on a Sample and Hold
module from the Insert > Modifiers group. It samples and holds the
input voltage, triggering the Hold plug. An Oscillator module controls
the triggering rate; its rate determines re-sampling rate.

Getting Down and Dirty with Distortion Effects
Figure 2.102: Lo-fi re-sampling (resampler2.se1)

This structure generates considerable aliasing noise above the re-sam-
pling frequency. We may clean up the mess a little using filters. Figure
2.102 also shows a simple one-pole low-pass filter used to smooth top-
end frequencies after re-sampling.

A Quantizer (Insert > Modifiers > Quantizer) module is great for simu-
lating low bit rates. It constrains the input signal to voltage ranges spec-
ified by the Step Size plug. So, if you set step size to 5 volts, the output
values will be −10, −5, 0, 5, and 10 volts. This is similar to 2-bit resolu-
tion—no pun intended—enabling values of 22 = 4 different value. A
switch with fixed values lets users select step size for different bit reso-
lutions. Figure 2.103 illustrates a bit crusher effect with a list for select-
ing bit depth. In the fixed-value pyramid, every number is half the value
below it. This means every step increases depth by one bit.

Figure 2.103: A bit crusher’s structure (bitcrusher1.se1)
109

Chapter 2 Designing VST Effects in SynthEdit

110
Heads up:
❖ An sc:Quantizer module is fully compatible with the in-built Quan-

tizer, but consumes far less CPU power.

❖ Lance Putnam’s LP-BitCrush module creates the same lo-fi effects,
re-sampling, and bit reduction.

Go-to files:
Effects\Lo-fi\resampler1.se1
Effects\Lo-fi\resampler2.se1
Effects\Lo-fi\bitcrusher1.se1

Vocoders

Vocoders were designed in the 1930s to encode and transmit voice sig-
nals via phone lines, and then decode, synthesize, and render the origi-
nal voice. The name is a portmanteau of voice and encoder. They usually
analyze the spectrum of the input signal by splitting the input signal—
called the modulator—into different bands using band-pass filters.
Then they transmit this spectral data to another signal called the carrier
using voltage-controlled amplifiers. This effect lends a vocal quality to
synthesizers, guitars, drum loops, and the like.

Robert Moog introduced vocoders to music in the 1970s when he devel-
oped a ten-band device used by Wendy Carlos in the soundtrack to
Clockwork Orange. A Moog synth provided the carrier signal; a micro-
phone the modulator signal. Many artists since have used vocoders in
pop music. Countless Hollywood robot voices came courtesy of vocod-
ers.

Many analog vocoder units surfaced in the ’70s and ’80s, sporting from
ten to 32 frequency bands for analysis and synthesis. Most used four- or
six-pole band-pass filters with steep 24 to 36 dB/octave slopes to sepa-
rate frequency bands. Steep filters reduce overlapping and interference
between bands, improving encoded speech intelligibility. Figure 2.104
is a diagram of a vocoder.

Vocoders
Figure 2.104: Vocoder schematic

Creating a Vocoder

DH_MultiFilter2 is a fine choice of band-pass filter for many reasons.
For one, the Filter Stages switch makes its steepness easy to adjust. A
two-pole band-pass filter has a 12 dB/oct. slope. With every added stage,
the number of poles increases by two. So, three does the trick for a
36 dB/oct. slope. For the other, peak gain is normalized to 0 dB in BP2
mode. This lets you adjust the filter’s Q factor and, by extension, its
bandwidth, without dialing in big differences in gain. The third reason
is that its internally cascaded filter stages are CPU-friendly.

Even if you’re not obsessively tidy, it’s wise to put each band in its own
container. Figure 2.105 maps the structure of one vocoder band. First,
the filters process both the modulator and carrier signal. Then a Peak
Follower module extracts the modulator signal’s envelope, whose volt-
age controls the carrier band’s amplitude. The Level Adj module acts as
a VCA, adjusting the carrier’s volume. We set the DH_MultiFilter2
modules to BP2 mode, and filter stages to three. The input mode is
Pitch/Res, making it easy to space the bands equally in the logarithmic
frequency domain.

Figure 2.105: One vocoder band’s structure
111

Chapter 2 Designing VST Effects in SynthEdit

112
Figure 2.106 shows a vocoder structure with ten bands. Modulator, Car-
rier, Bandwidth, Attack, and Decay plugs connect to all the bands.
Bands are spaced 3⁄4 octave apart. Pitch voltages are 3.25, 4, 4.75, 5.5,
6.25, 7, 7.45, 8.5, and 9.25, roughly translating to 130, 220, 370, 620,
1050, 1760, 2400, 4500, and 8400 Hz, respectively.

Figure 2.106: A ten-band vocoder’s structure

We named the lowest band LP Band, and used a two-stage (24 dB/oct.)
low-pass filter rather than a band-pass filter. HP Band designates the
highest band, and as the name suggests, the container uses a 24 dB/
octave high-pass filter. Analog gear often uses the same ten-band setup
to cover the full frequency spectrum. Despite the few bands, you’ll find
the speech reasonably intelligible. Detecting voiced and unvoiced
sounds helps improve intelligibility, as you will soon discover.

Figure 2.107 outlines a rudimentary stereo vocoder’s structure. This
prefab’s carrier is an oscillator-generated saw wave. Though this is a
common analog setup, you could replace it with something as complex
as a full-fledged polyphonic internal synth engine. The stereo input sig-
nal is the modulator.

Vocoders
Figure 2.107: A basic stereo vocoder (vocoder1.se1)

The BW knob adjusts bandwidth. Dial in greater bandwidth, and cross-
talk between bands increases. Backing off the bandwidth separates
bands better. Above a certain point, bands become individual resonant
peaks, sounding like a fixed bank of a resonant phaser.

Two methods serve to process an external modulator and external car-
rier signal. In many plug-ins, one input (for example the left channel)
is the modulator, and the other is the carrier, which means settling for a
mono sound. Side-chaining with four input channels is a stereo alter-
native. Two channels provide the stereo carrier, and another two the ste-
reo modulator. Not all hosts support this configuration, however.

Heads up: Etric van Mayer has two third-party modules for creating
vocoders, EVM DBV, a band-pass filter bank for one band, and EVM
Vocoder.

Go-to files: Effects\Vocoder\vocoder1.se1
113

Chapter 2 Designing VST Effects in SynthEdit

114
Improving Intelligibility

Vocoded speech sounds lifeless. Analog vocoder units often feature a
white noise generator to simulate unvoiced sounds. Most unvoiced
sounds, like the consonants s, t, k, and f, comprise high-frequency hiss
with some resonant frequencies. Detecting the level of frequencies
above 4 kHz serves to assess the sound’s fricative quality. Our example
does this by filtering frequencies below 4 kHz, and then using this con-
trol signal’s envelope to adjust the white noise level. To see how this
works, look no further than figure 2.108.

Figure 2.108: Detecting unvoiced sounds

Adding this noise to the carrier signal notably improves speech intelli-
gibility. Figure 2.105 is a snapshot of this structure.

Figure 2.109: Vocoder with white noise (vocoder2.se1)

The Noise knob adjusts the level of noise used to fake unvoiced and fri-
cative sounds. Employ only a noise source for the carrier signal, and
you will get something akin to robotic whispering.

Go-to files: Effects\Vocoder\vocoder2.se1

More Mischief with Multi-band Processing
More Pitch-shifting Fun
❖ Change the carrier bands’ frequencies to cook up a pitch-shifting

effect. Shifting carrier bands simulates positive or negative pitch
changes. Some vocoders let you adjust the modulator bands’ fre-
quency; many let you adjust individual bands’ levels.

❖ To configure a simple pitch-tracking setup, filter the modulator at
around 250 Hz using a low-pass, and patch the signal to the oscilla-
tor’s Sync plug. This synchronizes the oscillator to the 0 crossings in
the modulator, making it roughly track the modulator signal’s pitch.

❖ You can add a Freeze option by using Sample and Hold modules
that retain modulator bands‚ status to let your users freeze the
sound timbre.

More Mischief with Multi-band Processing

A vocoder is not the only application that calls for splitting the input
signal into separate frequency bands. Occasionally, users wish to pro-
cess low, middle, and high frequencies independently. A multi-band
dynamic processor, frequently used for mastering, is one example.
Splitting the input signal into bands lets you treat these bands with dif-
ferent compressor settings. And it reduces interference between fre-
quency regions, for example, so that the kick drum doesn’t encroach on
the hi-hat’s tone and dynamics.

Multi-band distortion is another popular application. Rather than sub-
jecting the entire signal to a waveshaper, it is first sliced up into bands.
This cuts cross-talk between bands, and gives you greater leeway for
shaping sound. You could, say, leave the low-end untouched, squeeze
the mid-range hard, and add a pinch of overdrive to the high-end. This
is akin to harmonic exciter that shapes just a slice of the frequency pie
and creates new harmonics.

Other applications include applying a different chorus effect to differ-
ent frequency regions. Almost all effects combine with multi-band pro-
cessing. Figure 2.110 is a schematic diagram of a multi-band processor.
It shows three bands, though some dynamic processors use four or
five. Crossover filters like those found in speaker cabinets split the
input signal into individual bands. First the processor shapes bands
separately, and then blends them to a composite output signal.
115

Chapter 2 Designing VST Effects in SynthEdit

116
Figure 2.110: Multi-band processing

Crossovers

Crossover filters are key ingredients of a multi-band processor. Choose
the filters carefully because they go a long way towards determining the
processor’s characteristic and transparency. A crossover filter separates
frequency bands, yet it must retain a flat output when the two bands
mix. Its phase response is also important for retaining transient trans-
parency and minimizing band interaction.

Crossovers generally come in two categories, finite impulse response
(FIR) and infinite impulse response (IIR) filters. FIR filters’ linear
phase is an advantage because it benefits transparent band separation.
At the time of writing, FIR crossover filters were unavailable in Synth-
Edit. Most built-in and third-party filters—one-pole, state variable,
biquad and Moog—are recursive IIR filters. Now let’s look at the most
important IIR crossover filters, hopefully without getting too tangled in
filter theory.

One-pole Filters
The simplest crossover uses one-pole filters to separate the two bands.
Surely the most straightforward option is to apply a one-pole low-pass
filter to a signal, and then subtract the low-pass output from the origi-
nal input. This yields the high-pass output, and also ensures the low-
pass and high-pass filters’ sum equates to the original sound. Figure
2.111 graphs a one-pole low-pass and high-pass filter’s frequency
response.

More Mischief with Multi-band Processing
Figure 2.111: One-pole crossover frequency response

One-pole filters’ phase and transient responses are strong, but with just
6 dB/octave slope, their band separation is weak. Figure 2.112 depicts a
rudimentary one-pole crossover.

Figure 2.112: One-pole crossover structure

Linkwitz-Riley Filters
The speaker industry values Linkwitz-Riley filters for their flat summed
output and good band separation. Let’s see if we can second that emo-
tion by cascading two Butterworth filters, each with −3 dB gain at the
cutoff. The cascaded filters’ gain at the crossover frequency is −6 dB,
which comes to 10–6/20 = 0.5. If the low-pass and high-pass filters’ gain
is 0.5 each at the cutoff and you add them, their sum equals one, that is,
a flat frequency spectrum. Figure 2.113 tracks the frequency response
of 24 dB/oct. L-R crossovers. The dashed line runs at −6 dB. This is
where the low-pass and high-pass responses meet, yielding a flat sum.
117

Chapter 2 Designing VST Effects in SynthEdit

118
Figure 2.113: A 24 dB/oct. Linkwitz-Riley crossover’s frequency response

12 dB/Octave L-R Filters
Cascading two one-pole low-pass or high-pass filters creates a two-pole
(12 dB/octave) Linkwitz-Riley crossover because one-pole filters have a
Butterworth characteristic. Using a DH_MultiFilter2 with a Q setting of
0.5 (that is, −6 dB) achieves the same result. Don’t forget to set the Filter
Stages to one, and the Input mode to Pitch/Q or Hz/Q. Remember also
to invert the polarity of one band owing to each pole’s 90-degree phase
shift. Two poles add up to a 180-degree phase shift, so you must invert
one band’s polarity to put the two in phase. Figure 2.114 pictures two
options that yield largely the same results.

Figure 2.114: 12 dB/oct. Linkwitz-Riley crossovers

24 dB/Octave L-R Filters
Cascading two two-pole Butterworth filters creates four-pole Linkwitz-
Riley filters. Though their band separation is steep, their transient
response is less impressive. The simplest solution is to use a
DH_MultiFilter2 in Hz/Q or Pitch/Q mode. Set Q to 0.7071, which

More Mischief with Multi-band Processing
equals −3 dB. Then set Filter Stages to two to cascade two filters in
serial array. No need to invert polarity here. The four poles yield a sum
360-degree phase shift, so the two outputs are in phase. Figure 2.115
shows the structure.

Figure 2.115: 24 dB/oct. Linkwitz-Riley crossover

This should cover the basics, for more math behind Linkwitz-Riley
crossovers, click to http://www.linkwitzlab.com/crossovers.htm.

Go-to files: Effects\Multiband\crossovers.se1

Putting Crossover Filters into Practice

Now that you’ve fought your way through this windy introduction,
you’re probably eager to learn how to use these filters. Figure 2.116 is a
schematic diagram of a three-way crossover separating the signal in
low, mid, and high bands. F1 and F2 represent the crossover frequen-
cies. The low band has a low-pass filter with the F1 cutoff. The mid
band has a high-pass filter with the same frequency, and a low-pass fil-
ter at the second crossover frequency, that is, F2. All the high band
needs is a high-pass filter with an F2 cutoff. Feel free to add more mid-
dle bands using a pair of low-pass and high-pass filters.

Figure 2.116: A schematic view of a three-band crossover
119

http://service.steinberg.de/databases/plug-in.nsf/plug-in

Chapter 2 Designing VST Effects in SynthEdit

120
Figure 2.117: A 24 dB/oct. three-way crossover’s frequency bands

Building a Two-band Compressor

Multi-band processing applications abound. Figure 2.118 shows one, a
simple two-band compressor. Two-pole crossovers separate both the left
and right input signals into low and high bands. Identical to the pre-
fabs we used for dynamic processing, the two compressors process the
bands separately. We enabled Controls on Parent in both compressor
containers’ Properties window to show their user interfaces in the main
panel. This lets users handle an individual compressor’s interface as a
group in the main interface. Figure 2.118 gives you a view to how this
works.

Figure 2.118: A two-band compressor’s structure

Processing multiple bands is a complex chore, and it helps the user to
hear band adjustments in isolation. Though inessential and often lack-
ing in plug-ins, this option does come in handy. And it’s easily imple-
mented using switches that route signals to the output or cut them off

More Mischief with Multi-band Processing
at the pass, so to speak. Users can select Lows to patch only the low
compressor’s outputs signal out, and Highs to patch only the high com-
pressor’s signal out. Both compressors’ outputs connect to the Both
plug, which enables users to tap a composite of the two bands.

Figure 2.119: The two-band compressor’s GUI

Go-to files: Effects\Multiband\twoband_comp.se1
121

3
Stepping Up to Synthesis
Our trek through modular audio processing has arrived at an interest-
ing juncture—sound synthesis. Synthesis entails generating audio sig-
nals electronically or digitally. Some synthesis techniques aim to repro-
duce the sound of real-world instruments. Others strive to create
unprecedented, unique, or outright bizarre signals. The most common
synthesis technologies are subtractive, frequency and phase modula-
tion, wavetable, physical modeling, additive, and phase distortion.

Subtractive synthesis may well be the most widespread of the bunch. It
uses different filters to selectively cull frequencies from a wave pro-
duced by oscillators and other sound sources. Digital Yamaha synths
like the DX7 popularized frequency modulation synthesis. Ironically,
they actually used phase modulation, where a waveform modulates the
phase of another oscillator, to do this. Later more synthesis technolo-
gies surfaced, some of which featured fixed wavetables stored in mem-
ory; others mimicking the sound of physical instruments through
physical modeling. Phase distortion synthesis is akin to FM synthesis,
where changing a sine wave’s phase shapes timbre. Additive synthesis
creates sound by adding sine partials rather than subtracting ingredi-
ents of a spectrally rich signal. This chapter deals with the two key
methods of synthesis, subtractive and FM synthesis, explaining their
theory and implementation in SynthEdit.

Heads up: See also the Appendix for a brief history of synthesizers.
123

Chapter 3 Stepping Up to Synthesis

124
Less Is More with Subtractive Synthesis

Recapping Subtractive Synthesis

Subtractive synthesis is probably the most common approach to syn-
thesizing sounds. Usually, oscillators create basic waveforms with rich
spectral content. Figure 3.1 shows the most common waveforms—saw,
pulse, and triangle.

Figure 3.1: Basic waveforms

Saw and pulse waves’ spectral content is very rich. For example, a saw
wave with a base frequency of 500 Hz comprises harmonics spaced at
equal intervals, with exponentially decaying amplitude as shown in fig-
ure 3.2. However, many physical instruments’ harmonics’ amplitude is
lower at high frequencies. Filtering the waveform’s high frequency con-
tent simulates this, conjuring a smoother, darker sound. Figure 3.3
shows the same waveform filtered at 2 kHz using a 24 dB/octave reso-
nant low-pass filter. This resonance boosts harmonics at around 2 kHz.
Beyond that, the amplitude now decays at a rate of 30 dB per octave,
that is, faster than in the original spectrum.

Less Is More with Subtractive Synthesis
Figure 3.2: Spectral content of a 500-Hz saw wave

Figure 3.3: Spectral content of a 500-Hz saw wave filtered at 2 kHz

Modulating the filter’s frequency with an envelope lets you vary spec-
tral content over time, say to simulate damping. Usually, another enve-
lope modulates the main amplitude contouring the volume curve. This,
in turn, serves to mimic fast percussive instruments and slow strings
and pads. Figure 3.4 shows a filtered signal’s waveform and spectro-
gram. We applied an envelope to both the amplitude and filter cutoff
frequency. You’ll find the amplitude envelope in the waveform graph,
and the filter envelope in the spectrogram.
125

Chapter 3 Stepping Up to Synthesis

126
Figure 3.4: A filtered sound’s waveform and spectrogram

That pretty much sums up subtractive synthesis. Most subtractive
synths give you more modulation tools such as low frequency oscilla-
tors and other envelopes that vary different parameters over time. And
most synthesists enrich sounds by blending several waveforms, or pro-
cessing them with added effects. Versatile subtractive synths offer vari-
ous filters with different characteristics and slopes that let you sculpt
sounds’ timbre and shape in many ways.

More on MIDI

Before we delve into how to create a subtractive synthesizer, let’s look at
the way instruments communicate. Arriving in the early 1980s, the
MIDI (Musical Instrument Digital Interface) standard aimed to stan-
dardize communication between instruments and synthesizers. Today
musicians everywhere use it for digital communication among instru-
ments, and to control sequencers, synths and effects. MIDI messages
use 16 independent channels to pipe messages to and fro. These mes-
sages include note-on, note-off, pitch bend, mod wheel, control change,
program change, aftertouch, and SysEx messages. Encoded as integer
numbers, they represent notes. MIDI note number 69 corresponds to
A4 (440 Hz), note 70 to A#4, 71 to B4, and so on.

Though both instrument and effect plug-ins can receive MIDI data,
effects lacking a MIDI input run just fine. SynthEdit offers the Plug-in
is Synth option in the Save as VST panel only if the main container
sports a MIDI input plug. Otherwise, it assumes the plug-in is an
effect.

Less Is More with Subtractive Synthesis
SynthEdit offers various modules for converting MIDI data to control
voltages. Serving as a synth’s main control module, the MIDI > MIDI to
CV module is the king of this hill. Figure 3.5 shows a rudimentary
example of a MIDI to CV module’s application. Both a Keyboard (Insert
> Controls > Keyboard) and a MIDI In (Insert > MIDI > MIDI In) mod-
ule connect to the MIDI to CV module’s MIDI In plug. This means you
can use an external device like a MIDI keyboard to generate messages,
and pipe them in via the default MIDI port specified in Edit > Prefer-
ences > Audio & MIDI > MIDI In.

Figure 3.5: A simple example of a MIDI to CV in action

You could mouse-click the tiny keyboard on your screen to play notes.
The Keyboard module also responds to keystrokes on a keyboard by
producing MIDI notes. This layout resembles two rows of piano key-
boards mapped to letters. Z to M and Q to P signify white keys, while S,
D, G, H, J, 2, 3, 5, 6, 7, 9, and 0 represent the black keys. You’ll find a
chart showing how notes are mapped in figure 3.6.

Figure 3.6: Keyboard-to-MIDI note mapping
127

Chapter 3 Stepping Up to Synthesis

128
Pressing a key elicits a saw wave with the assigned pitch. Be sure to
turn your speakers down before doing this, as the saw wave’s volume
may be very high. The synth converts the MIDI note to pitch at 1 volt/
octave. This pitch controls the oscillator’s frequency. At 10 volts, the
Gate’s output remains high until you press any note, and returns to its
low 0-volt value when you release the last key. Pressing a key triggers
envelopes and other events. In our example, it controls the VCA’s vol-
ume, which adjusts the oscillator’s amplitude. Pressing any key trig-
gers the signal at peak level; releasing all keys mutes the signal. This
primitive on/off design is the cave dweller among synth controllers.

MIDI to CV Properties

Now let’s examine the MIDI to CV module’s controls.

Channel: By default, the module responds to all MIDI channels. You
may limit it to one by picking a MIDI channel from Channel the selec-
tor.

Bend Range: The pitch-bend default setting is 12 semitones. Many
synths offer different pitch-bend ranges, including two semitones.
Specify the range here. If you connect a control to this plug and slap
this feature on the GUI interface, your users can select the pitch bend
wheel’s bend range.

Mono Mode: This plug shoehorns the synth into mono mode to spare
CPU power. Simply set it to On if you wish to conjure a monophonic
synth.

Retrigger: Designed to work in mono mode, it retriggers envelopes
when playing legato. Legato is a fancy term for playing another note
before releasing the previous one.

Portamento Time: Use this control to create portamento effects in legato
mode. Portamento means a continuous gliding movement from one
tone to another. So if you hit a note before releasing its predecessor, the
pitch gradually morphs over a defined time. Often called glide, you can
create a similar effect by squeezing in a one-pole low-pass filter after
the Pitch plug.

Mono Note Priority: Offering Off, Low, High, and Last settings, it con-
trols the synth’s response in mono mode. Play two or more notes in
Low mode, and it uses the lowest pitch. Set to High mode, it uses the
highest pitch. Last plays the first note again if you press and hold one
key, while pressing and releasing another.

Less Is More with Subtractive Synthesis
Heads up:
❖ MIDI to CV is territorial; only one can live in one container. Drop

another MIDI to CV module into the container or a sub-container,
and you will get an error message:

You have several “MIDI to CV,” “Soundfont Player,” or “Drum Trig-
ger” modules together. Put each in its own container.

❖ When mono mode is disabled, the Polyphony setting in the con-
tainer’s Properties window defines the polyphony for the MIDI to
CV module in that container.

❖ SynthEdit converts a signal to mono as it leaves the container. This
is why we mustn’t place the MIDI to CV module in a separate con-
tainer. If we did, the control voltages for polyphonic voices would
add up, creating some very seasick off-pitch notes.

Building a Basic Polyphonic Synth

Now let’s put together a basic synth structure. Figure 3.7 shows a dead-
simple layout with one oscillator and one envelope in a container, and
no filter. Our synth converts MIDI input to pitch and gate CV signals.
The pitch signal controls the oscillator’s frequency. The gate signal
feeds an ADSR module (Insert > Waveform > ADSR), which responds
to each incoming note by producing an envelope. This ADSR envelope
controls the VCA’s volume, which modulates the oscillator’s sound.
This processed signal goes to both output channels.
129

Chapter 3 Stepping Up to Synthesis

130
Figure 3.7: A dead-simple synth structure

To test our little rig, connect a Keyboard or MIDI in module to the con-
tainer’s MIDI In plug so you can play notes. Wire its outputs to a
Sound Out module so you can audition the results. Figure 3.8 shows
what this looks like.

Figure 3.8: Test-driving your shiny new synth

Play several notes at the same time, and our synth will generate them.
Open the oscillator’s Properties window to view the number of voices
and active oscillator clones. The green dots at the oscillator’s top left
corner point out polyphony. Figure 3.9 shows six voices, with three cur-
rently active.

Less Is More with Subtractive Synthesis
Figure 3.9: Look here to see how many voices are active

Heads up: The main container’s default polyphony is six voices. To
change the number, open the main container’s Properties window and
adjust the Polyphony value.

Go-to prefabs: Synthesis > PolySynth1

Sending Off Envelopes

Envelopes mostly serve to contour amplitude and manipulate the fil-
ter’s cutoff, though they can modulate other parameters—an oscilla-
tors’ pitch, an LFO’s depth, and so on. The most common envelope
comes with four sections, attack, decay, sustain, and release, or ADSR
for short. Figure 3.10 gives you a view to an ADSR envelope’s curve.
The envelope’s default level is 0. When the Gate plug’s signal changes
from 0 to a positive value, it triggers the envelope. The signal rises to
the peak level as defined by the Overall Level plug. If this plug’s value is
negative, the envelope flips over. The shape remains the same, but the
negative voltages turn it upside down.

Figure 3.10: ADSR envelope
131

Chapter 3 Stepping Up to Synthesis

132
Again, the Overall Level plug defines the envelope’s peak level. The
attack value decides how long it takes for the signal to reach this peak.
It then decays to a level specified by the Sustain plug, remaining con-
stant until the Gate plug’s voltage is high. The Decay plug determines
how long this transition takes. Release the key—the gate signal’s volt-
age dips—and the envelope’s level tapers off to 0. The Release plug
determines how long this takes.

Attack, decay, and release plugs’ scale is exponential. The rules for con-
version are:

Time is specified in seconds. This means the 0-to-10 volts range equals
9.8 ms to 10.07 seconds. Negative voltages also work. Fast, percussive
attacks may mandate even shorter times. But if the time is too short,
pressing and releasing keys may elicit clicks. This is why some synths
limit the shortest time to about 1 ms. Some filters also produce clicks at
hair-trigger release times. A good, flexible scale ranges from −3.2991
(1 ms) low to 9.9885 (10 sec.) high.

David Haupt’s BasicModulePak offers a free module that converts mil-
liseconds to voltage. A voltage-to-millisecond converter module was
unavailable at the time of writing, but you can easily whip one up with
Waveshaper2. Figure 3.11 shows a structure that converts voltage to
time. The Waveshaper’s input range is −5 to +5 volts, so the input must
first be multiplied by 0.5. Using x ∗ 2 instead of x in the equation
restores the original value.

Figure 3.11: A nifty voltage-to-time converter

Go-to prefabs: Synthesis > VoltageToTime

Time = 2Volts − 6.666666

Volts =
log (Time)

log(2)
+ 6.6666

Less Is More with Subtractive Synthesis
Once you have built a voltage-to-time converter prefab, you can crown
you efforts with a readout showing the value in seconds. You may rec-
ognize the structure; it leans heavily on the knobs we used in the
Effects chapter. The prefab in figure 3.11 converts voltage to time. The
setup below converts time to a GUI float value, sending it to a Text
Entry2 module for display. Figure 3.12 shows this structure.

Figure 3.12: Time knob with readout

Twist this knob and the exact values appear on the GUI as in the exam-
ple in figure 3.13.

Figure 3.13: VCA with readout

Go-to prefabs: Synthesis > PolySynth2
133

Chapter 3 Stepping Up to Synthesis

134
Adding Oscillators

Our first example featured an unsophisticated design sporting a lone
oscillator. Most subtractive synths offer two or three oscillators for each
voice to fatten up sounds. Most oscillators are de-tunable, meaning you
can pitch one oscillator frequency slightly higher or lower than the
other for a bubblier, chubbier sound. Many synths also offer octave or
coarse tuning.

You’ll find a Detuner prefab in the Insert > Controls group. Figure 3.14
shows its structure. Two List plugs are on board; one selects octaves,
the other notes. The Octave plug offers −2, −1, 0, 1, and 2 volts. If you
open the fixed values for Note, you will see 0, 0.0833333333,
0.166666666666, 0.25, and so on. Let’s see what these numbers are all
about: Oscillators usually work with one volt per octave. This means
adding one volt to a pitch detunes the note by one octave. Say you wish
to detune a pitch by one semitone. An octave comprises 12 notes. To
detune a pitch by one semitone, you must add 1/12 to the original
pitch, or roughly 0.083333333 volts. Add 2/12, or about 0.1666666 volts,
to detune by two semitones; 3/12 or 0.25 volts for three steps, 4/12 or
0.3333333 volts for four, and so on. There you have the Fixed Values’
decimal numbers’ origins.

Less Is More with Subtractive Synthesis
Figure 3.14: The Detuner prefab

In this prefab, you’ll find a knob wired to the Fine plug. Its values run
from 0 to 0.08333333333, or 0 to 1 semitones for fine-tuning. You can
extend the control range from −0.08333333333 to 0.08333333333, or −1
to 1 semitone.

Now feast your eyes on a structure with two oscillators, each featuring
detuning controls, in figure 3.15. A detune prefab connects to each of
the oscillator’s Pitch plugs. This lets users tune the two oscillators indi-
vidually and relative to the base pitch provided by the MIDI to CV mod-
ule. We added two knobs for adjusting the oscillators’ level. The Level
Adj modules send these signals to the VCA’s Signal plug, where they
merge. You’re familiar with rest of the structure (the ADSR), so we
spared you a diagram. Though this structure still lacks a filter, you can
conjure some simple lead and pad sounds. Play a couple of notes and
fiddle with the detuning and envelope settings to see what you get.
135

Chapter 3 Stepping Up to Synthesis

136
Figure 3.15: Two oscillators with detuning controls

Go-to prefabs: Synthesis > PolySynth3

Pulse Width

Note that we added two knobs for adjusting pulse width, although they
only shape the waveform when a pulse waveform is selected. Telecom
and electronics engineers call this the pulse wave’s duty cycle. Figure
3.16 shows pulse waves at different pulse width settings.

Figure 3.16: Pulse waveforms with varying pulse width

Different pulse widths’ spectral content varies, lending the wave differ-
ent characteristics. Subtractive synths often use LFOs to modulate
pulse width, achieving a rich flavor similar to the sound of two detuned
oscillators.

In SynthEdit, 0 volts yields a symmetrical waveform. As you jack up the
pulse width value, the waveform grows increasingly asymmetrical.
Approaching 10 volts, it’s more of a short spike. Feel free to use a
Scope2 module—its oscilloscope analyzes signals—from the Insert >
Controls menu to check the waveform’s shape.

Less Is More with Subtractive Synthesis
Figure 3.17: Analyzing waveforms with a Scope2 module

More on Waveforms

The oscillator offers sine, saw, ramp, triangle, pulse, white noise, and
pink noise waveforms. A ramp sounds much like a saw wave because
they share the same shape, though the ramp’s is inverted. Used as an
LFO, it provides falling rather than rising voltage.

The two flavors of noise are white and pink. White noise’s power spec-
tral density is flat, yielding a sharp, bright sound. It serves to create per-
cussive instruments such as snare drums and hi-hats, and spectral
effects. Pink noise’s power density decays at −3 dB per octave for a
softer, darker sound.

Two noise oscillators are usually one too many. Apart from noise type,
there are generally no other parameters to tweak for a noise generator.
You can build a more versatile synth by confining the oscillators’ wave-
forms to sine, triangle, saw, and pulse, and adding a separate noise
oscillator with a dedicated level knob. Figure 3.18 shows how this
works.
137

Chapter 3 Stepping Up to Synthesis

138
Figure 3.18: Adding a separate noise oscillator

Aptly named Noise, the third oscillator’s waveform is now a white noise
generator. It features a dedicated Level Adj module sporting a Noise
knob. If the Limited List Entry prefab that selects the two main oscilla-
tors’ waveform looks familiar, you may remember it from the “Effects”
chapter. Its list offers sine, triangle, saw, and pulse waves. To see the
full setup, give figure 3.19 a gander. The List to Bools module’s Spare
plug connects to the Bools to List module’s Sine, Triangle, Saw, and
Pulse plugs in that order to create the list.

Less Is More with Subtractive Synthesis
Figure 3.19: Limiting waveforms to sine, triangle, saw, and pulse looks like
this

Go-to prefabs: Synthesis > PolySynth4

Get Smooth with the Gibbs Effect

Open an oscillator’s Properties window, and you will see an advanced
option called Smooth Peaks (Gibbs Effect). Now compare the two oscil-
lators’ waveform in a scope, and you will discover they are different.

Figure 3.20: The Smooth Peaks option

Enable Smooth Peaks and the waveform will resemble a saw wave,
more or less. Disable it, and a big ripple appears at the edge. How
come? Put simply, the waveform is band-limited, meaning that its fre-
quencies range no further than from 0 Hz to half the sampling rate.
The Fourier series tells us summing an infinite number of sine waves
creates a band-limited saw wave. Summing a limited number of sine
waves creates what scientific types call the Gibbs effect; we’d call it rip-
139

Chapter 3 Stepping Up to Synthesis

140
ples at the edges. The same happens to other waveforms with sharp
edges—ramp and pulse come to mind. So, this rippling waveform is a
fixture in the digital domain. Smooth Peaks curtails the effect, but also
diminishes high frequency content above 4 kHz, as a look at the fre-
quency analyzers in figure 3.21 will confirm.

Figure 3.21: Smooth Peaks’ high-frequency damping

Enabling Smooth Peaks is a good idea for LFOs; otherwise the Gibbs
effect may introduce weird artifacts near the waveform’s edges. If you
prefer brighter-sounding oscillators, disable this option.

Sizing Up Filters

A subtractive synth without a filter is an exercise in blandness—a curry
dish without spices. Filters lend sounds their flavor by boosting and
cutting the oscillators’ frequencies. So, let’s first review the different
breeds of filter.

The State Variable Filter

SynthEdit offers two breeds of filters suitable for use with subtractive
synths. One is the SV Filter, a two-pole state variable—or SV, for
short—filter with resonance. It works in low-pass, high-pass, band-
pass, and band-reject (also called notch and band-stop) modes. And all
at the same time, if you wish. Low-pass and high-pass modes’ slopes
are 12 dB per octave slopes; band-pass mode’s is 6 dB per octave. Fig-
ure 3.22 graphs a few of the different modes’ transfer curves.

Figure 3.22: A small selection of SV filter transfer curves (LP and HP mode)

Less Is More with Subtractive Synthesis
Selecting Type
A simple method of selecting the filter type is using a Many → 1 switch.
Look no further than figure 3.23 for an example. But simplest is not
always smartest. You’ll find a 1 → Many switch is a more efficient tool.
See the Optimization chapter’s SV Filter section to learn more.

Figure 3.23: Selecting the mode

Resonance Levels
Try adjusting an SV Filter’s pitch and resonance parameters and you
may discover the filter’s resonance spikes somewhere around 10 volts.
This is rarely desirable, and may cause clipping. Also, the resonant
response is nonlinear in the dB scale, as a glance at figure 3.24 attests.
Around 10 volts, the resonance value skyrockets close to the point of
self-oscillation. To prevent this, you may want to confine the resonance
knob’s highest value to about 9.8 volts, or roughly 30 dB resonance.

Figure 3.24: An SV filter’s resonance levels

Heads up: Scoofster SVF, a third-party SV filter, uses the more conve-
nient decibel scale for adjusting resonance. This filter also spares CPU
power in some modes.
141

Chapter 3 Stepping Up to Synthesis

142
Cascading More Filter Stages
Cascading two SV filters in series creates a steeper low-pass filter. To do
this, wire the first filter’s low-pass output to the second filter’s Signal
plug. When pitch settings are identical, this structure behaves like a
four-pole 24 dB/oct. low-pass filter. Figure 3.23 shows an example of
such a structure. Note that the second filter’s resonance value is two,
which is low indeed. This means only the first filter adds resonance to
the sound.

Figure 3.25: Do this to cascade two two-pole SV filters

Heads up: Cascading many band-pass or high-pass outputs is not a
good idea. It may elicit annoying high-frequency ringing because state
variable filters boost high frequencies with high cutoffs even at low res-
onance settings. You do have a tradeoff option, though. The third-party
sc:SVF gives you less high-frequency ringing at the expense of a more
limited frequency range.

Normalizing Output Level
High resonance levels can kick the output level up a few notches, caus-
ing clipping or huge inconsistencies between output levels. Some fil-
ters let you normalize levels to prevent this problem. This handy func-
tion attenuates the signal level as the resonance level rises. Sadly, SV
Filter lacks such a feature. Happily, it is easily added. See figure 3.26 for
an example. A Level Adj module sited in front of the filter adjusts the
incoming signal. 10 volts equals 100 %; lower values attenuate the sig-
nal accordingly. A Waveshaper2 module calculates a value between 10
and 4 volts, depending on what the Resonance plug is up to. Resonance
ranges from 0 to 10 volts. Subtracting 5 volts yields a −5 to 5 volts
range. Using x + 5 in the equation in lieu of x yields the original reso-
nance value. The resonance level, multiplied by 0.6, is subtracted from
10, resulting in a descending slope. Waveshaper2 does not do any
dampening at 0 volts resonance. At 10 volts, it attenuates the signal by
60 %. If you want more or less aggressive normalizing, simply change
the 0.6 in the equation. Higher values boost the normalizing factor.

Less Is More with Subtractive Synthesis
Figure 3.26: Normalizing output level

Heads up: Normalizing applies to low-pass, high-pass, and band-pass
modes only. You could normalize the signal in band-reject mode, but to
little effect. Its output levels are low enough as it is.

Go-to prefabs: Synthesis > SV Filter Norm

Mixing Outputs
Some synths let users mix a state variable filter’s low-pass, band-pass,
and high-pass outputs, which beats having to settle for just one type.
Users may then merge various filter outputs and mix their levels to
conjure unique sounds. The only drawback in SynthEdit is the more
outputs you connect, the slower SV Filter runs. Besides, the Level Adj
modules also devour CPU resources. Simply using low-pass, band-
pass, high-pass and band-reject modes is more efficient but less fun.
Figure 3.27 shows an example prefab.

Figure 3.27: Mixing low-pass, band-pass, and high-pass outputs
143

Chapter 3 Stepping Up to Synthesis

144
Based on the preceding prefab, this version first normalizes the output
level to compensate for resonance gain. The Low, Band, and High
plugs patch the low-, band-, and high-pass signals out. The Level Adj
modules tweak these signals’ levels and feed them to the IO Mod,
which blends the batch. Users may dial in unique filter characteristics
by varying these levels. The three outputs change the signal’s phase in
different ways, sometimes creating notches. Mixing Low Pass and Hi
Pass outputs creates a band-reject filter. Negative voltages are good to
go, so entering something like 10 and −10 volts for the low and high
values compels the prefab to subtract the high-pass from the low-pass
output. This evokes a flat response with a resonant peak at the cutoff
frequency, great for adding resonant peaks to a signal.

Heads up: State variable filters are all-pole filters, meaning they boost
high frequencies even when the resonance value is low. This affects
band-pass and high-pass outputs more than the low-pass output. And
mixing these outputs adds a touch more gain.

The Moog Filter

A digital emulation of Moog’s celebrated four-pole transistor ladder fil-
ter, the Moog Filter is a has a 24 dB/octave slope. Its internal saturation
circuit simulates analog components’ nonlinearities. Responding dif-
ferently to different input levels, it self-oscillates when resonance is
cranked. It behaves very differently to an SV filter at high resonance
levels. The Moog Filter features enhanced resonance levels for high fre-
quencies, adding high-end gloss, and moderate resonance for low fre-
quencies. At extreme resonance settings, the saturation circuit may
cause top-end aliasing.

On the third-party front, Marc Lindahl’s Moog VCF Ladder Filter is an
emulation sharing the same code as the Moog filter found in Steinberg
Model E. Rick Jelliffe’s RJ LP Filter 2 and 3 offer various saturation
modes, characteristics, and even high-pass versions.

Biquad Filters

Although SynthEdit version v1.0150 lacks biquad filters, they are com-
monly used in digital filter design. Biquad is short for biquadratic, a
second order filter comprising two poles and two zeros. Many third-
party filters feature this topology, including DH_BiquadFilter,
DH_MultiFilter2, and EVM LP Filter. Scoofster Low-pass also uses a
modified version of a biquad structure.

Less Is More with Subtractive Synthesis
A biquad filter’s transfer function is much like a state variable’s. What
sets the former apart is that it contains so-called zeros. They eliminate
the high-frequency ringing state variable filters are so notorious for.
Biquad filters’ high-frequency performance is excellent, highly stable
all the way up to Nyquist. Most are faster than state variables, and
much faster than Moog filters. On the downside, a biquad filter’s low-
frequency performance is not exactly a model of stability. At high reso-
nance levels, low frequencies tend to destabilize with excessive gain.
This can boost levels to extremes and cause clipping, especially during
fast filter modulations. Here’s a quick-fix: The structure in figure 3.28
adjusts the resonance levels for low cutoff frequencies to stabilize per-
formance. The curve approaches 0 at around −5 volts, though the true
value is 0 volts because the Waveshaper’s input is scaled to −5 volts.
This attenuates resonance for low frequencies. To adjust the amount,
simply replace the 0.1 in the exponent with another value.

Figure 3.28: Here’s how to stabilize biquad filters’ low-frequency perfor-
mance

Go-to prefabs: Synthesis > Biquad Stable

Biquad filters’ other drawback is the amount of calculation it takes to
modulate the filter. A biquad filter expends far more processing power
than a variable state filter. Some filters calculate less to save more. For
example, DH_MultiFilter2 calculates filter coefficients merely for every
fourth sample to improve performance. Bear in mind, though, that this
invites aliasing noise and unwanted artifacts when modulating the cut-
off frequency at speeds approaching the audio rate.
145

Chapter 3 Stepping Up to Synthesis

146
How Different Filter Types Compare

Table 3.1 summarizes the three most common filters’ strengths and
weaknesses. If your filter is destined for modulation at the audio rate,
then an SV Filter may well be a better choice than a biquad because it
modulates without consuming extra CPU power. Its low-end perfor-
mance remains stable under all conditions. If high-frequency perfor-
mance is more important to you, or you wish to cascade multiple
stages, then a biquad may be your better bet because it rules out high-
frequency ringing. Both filters offer low-pass, band-pass, high-pass,
and band-reject filters, though you may find their flavor a touch too dig-
ital compared to analog filter emulations. Users value Moog filters for
their distinct sound and timbre. Their internal saturation stages need
more calculations, so they impose a bigger burden on the processor.
Most offer low-pass mode only; some offer high. On the upside, you
can count on their modulation and resonance stablility.

+ = Weak, ++ = Medium, +++ = Good

Table 3.1: Comparison of different filter types

Slapping a Filter on a Synth

Now that we know all about the different filters’ pros and cons, we’ll
learn how to add a filter to the synth structure. Conventional wisdom
dictates placing the filter before the VCA. You could drop it in after the
VCA, but then if the filter self-oscillates, the VCA will not mute it as the
notes fade out. Figure 3.29 shows a schematic diagram of a basic dual-
oscillator synth with a filter placed before the VCA. The MIDI to CV

SV Filter Moog Biquad

Speed ++ + +++

Modulation +++ +++ +

Highs + ++ +++

Lows +++ ++ +

Types +++ + +++

Resonance ++ ++ ++

Sound digital analog digital

Less Is More with Subtractive Synthesis
module controls the two oscillators and the ADSR. The subsequent
stage adjusts the noise generator and oscillators’ levels, mixes these sig-
nals, and feeds them to the filter. The VCA applies a volume envelope
before the signal leaves the synth.

Figure 3.29: Schematic diagram of a two oscillator synth with filter

Before we build this structure, let’s streamline the synth we created ear-
lier. First we’ll introduce a simple Mix prefab for mixing the oscillators’
outputs. This is nothing more exciting than an empty container with an
input and output as shown in figure 3.30. If you patch several signals
into the In plug, the prefab mixes them and routes the composite
through to the Out. This prefab may seem superfluous now, but it will
make wiring easier later. Before you can make this connection, you
must first wire up the IO Mod’s Spare plug. Then connect the input to
the output, and delete the other wires.

Figure 3.30: A simple Mix prefab’s module and structure

Go-to prefabs: Synthesis > Mix

Dropping the oscillators with the Tuners and Level Adj modules into a
separate container makes the structure easier to work with. To do this,
press and hold Shift, and select the Tuner, Oscillator, and Level Adj
modules for an oscillator via mouse-click. Then execute the Edit
menu’s Containerise Selection command. You may have to change
labels or rearrange the plugs’ order. If you like the results, repeat the
procedure for the second and third oscillators. Feel free to reference fig-
ure 3.31; it shows the final structure without the VCA envelope. With
all the components apart from GUI features tidied up in containers,
you’ll find the going much easier.
147

Chapter 3 Stepping Up to Synthesis

148
Figure 3.31: Make mom proud and put those oscillators away in containers

Adding a No-frills Filter

Adding a filter to a tidy structure is a piece of cake. Simply site the filter
between the mixer and VCA as shown in figure 3.32. This setup uses
the same VCA envelope as the previous prefabs, so we’ll spare you the
details. Our example bases on a normalized multimode state variable
filter similar to the prefabs in the Sizing Up Filters section. Figure 3.33
x-rays the SV Filter prefab’s internal structure.

Less Is More with Subtractive Synthesis
Figure 3.32: Adding a filter

Figure 3.33: A map of the SV Filter prefab

Go-to prefabs: Synthesis > PolySynth6
149

Chapter 3 Stepping Up to Synthesis

150
Adding a Filter Envelope

The only option for adjusting the filter’s pitch in the previous prefab
was the Cutoff knob. Most synths feature a dedicated envelope, usually
an ADSR, serving to modulate the filter’s cutoff and create filter
sweeps. Figure 3.34 shows you a schematic diagram.

Figure 3.34: Schematic diagram of a filter envelope with keyboard tracking

To add a filter envelope, select the VCA ADSR with its control knobs,
copy the whole kit, and paste it into the picture. Connect the MIDI to
CV module’s Gate plug to the newly created ADSR’s Gate plug, and the
envelope’s Signal Out plug to the SV Filter’s Pitch plug. Now every note
triggers an envelope that the synth applies to the filter’s cutoff fre-
quency, thereby modulating it. Figure 3.35 shows the resulting enve-
lope section.

Figure 3.35: An Envelope section with dedicated volume and filter enve-
lopes

Go-to prefabs: Synthesis > PolySynth7

Less Is More with Subtractive Synthesis
Negative Envelopes
The Overall Level plug’s value adjusts the amount of modulation
applied to the cutoff, with one volt equaling one octave. Some synths
also offer negative modulation. If you enter a negative voltage to the
Overall Level plug, the envelope flips as shown in figure 3.36. You have
two options for adding positive and negative envelopes. One is to set
the Level knob’s control range to −10 to 10 volts. The 12 o’clock position
is passive, meaning that it prompts no modulation. Twisting the knob
clockwise dials in a positive envelope; counterclockwise dials in a nega-
tive envelope.

Figure 3.36: An inverted envelope

Here’s the other method for adding negative envelopes: Stake out a
range of 0 to 10 volts, and add a 1 → Many switch with an Inverted
module to one of the chains. Its setting determines if the knob’s value
is inverted, with a neutral or zero setting precluding modulation in
both modes. Figure 3.37 gives an example of this structure. Setting the
Invert switch to On flips the envelope over.

Figure 3.37: Inverting an envelope
151

Chapter 3 Stepping Up to Synthesis

152
Go-to prefabs: Synthesis > ADSR Invert

Creating an Exponential Envelope
The ADSR module automatically creates a linear envelope, that is, volt-
age rises and falls along a straight trajectory. This may sound artificial
because the level drops to 0 fairly abruptly. You have many options for
transforming an envelope from linear to exponential, and smoothing
out slopes a touch. One is to place a VCA after the ADSR and set its
Response Curve to Exponential or Decibel. Another is to use a
Waveshaper2 and customize its transfer curve. Perhaps the simplest is
to set the ADSR’s Overall Level to 10 volts, and connect the Signal Out
plug to Level Adj module’s two input plugs as shown in figure 3.38.

Figure 3.38: Fake an exponential envelope with this prefab

This creates a mock exponential envelope with smoother curves. Plac-
ing another Level Adj module after the first lets users adjust the enve-
lope’s level. Figure 3.39 illustrates the resulting envelope curve. The
Level Adj module multiplies the two inputs and divides the result by
10, thereby reducing sustain levels. Case in point: If the Sustain plug’s
setting is 5 volts, the sustain level will be 5 × 5/10 = 2.5 volts.

Figure 3.39: A linear vs a mock exponential envelope

Less Is More with Subtractive Synthesis
Go-to prefabs:
Synthesis > ADSR Exp
Synthesis > PolySynth8

Heads up: David Haupt’s DH_EnvSeg module lets you create enve-
lopes with any number of sections. It also lets you specify the response
curve’s individual sections. For more on this, see the module’s docu-
mentation.

Adding Keyboard Tracking

Many synths offer a keyboard tracking function for the filter, and yours
can too. What happens here is when the user enables key-tracking, the
note’s pitch affects the filter’s cutoff frequency. Say the key-tracking
value is one. If the user plays a note an octave higher, the filter’s cutoff
also climbs by an octave. You’ll find a schematic diagram in figure 3.40.

Figure 3.40: Key-tracking

A simple way of adding keyboard tracking is to wire the MIDI to CV
module’s Pitch plug to the filter’s pitch. Drop a Multiply module into
the signal chain to adjust the key-tracking amount. Multiplying the
pitch by values ranging from 0 to one changes the keyboard tracking
value. The problem is that this limits the filter’s cutoff range. Say a user
plays the middle A note. The pitch is 5 volts, which the synth adds to
the filter’s pitch. If the Cutoff knob’s range is 0 to 10 volts, then adding
the pitch shifts the range from 5 to 15 volts, with the lowest cutoff
being 440 Hz. Figure 3.41 shows a prefab which compensates for this
by dividing five times the amount of key-tracking from the detune
amount. This ensures the middle A remains fixed regardless of the key-
153

Chapter 3 Stepping Up to Synthesis

154
tracking value. You may wish to extend the cutoff range beyond 10 volts
so key-tracking does not unduly affect the highest frequency when play-
ing low notes. You’ll find a streamlined structure depicting how to con-
nect the Keytrack prefab to the filter in figure 3.42.

Figure 3.41: Key-tracking prefab

Figure 3.42: Connecting the Keytrack prefab

Heads up: Key-tracking values normally range from 0 to 1. Bear in
mind, though, that negative voltages are permissible, so higher notes
will lower the cutoff.

Go-to prefabs:
Synthesis > Keytrack
Synthesis > PolySynth9

More About Filters

The previous sections explained how to create a basic multimode filter
with a dedicated envelope and keyboard tracking. Many advanced soft-
ware and hardware synths feature two separately adjustable filter sec-
tions. They let you route filters in parallel or in series; often with a

Less Is More with Subtractive Synthesis
switch that changes the routing mode. And they let you do things like
use a stereo filter to create big, bold sounds by panning the oscillators
sited in front this filter. Frequently a saturation stage follows the filter,
spicing it up with unique sonic flavors. Be sure to bear aliasing in mind
when you give users the tools to saturate or distort signals.

Modulation

A subtractive synth without proper modulation possibilities is a car
without tires—it’ll go, but not very far. Most synths feature one or more
low frequency oscillators. Some boast added envelopes and various
MIDI modulation sources, such as mod wheel, velocity, aftertouch, and
control change messages. You can usually route these to filter cutoff,
pulse width or oscillator pitch, filter resonance, modulation depth, and
sometimes to other destinations. A 1 → Many switch can serve to select
the modulation sources’ destination, but a modulation matrix is more
convenient for mapping modulation sources. A mod matrix lets you
choose sources and destinations, and adjust amounts. Some mod
matrixes offer several destinations for each source with a dedicated
amount knob for each modulation routing. So let’s look at these modu-
lation sources.

LFOs

Synths’ and effects’ low-frequency oscillators are much the same. Most
synths’ LFOs offer frequencies ranging from 0.01 to 30 Hz. Some offer
Sample and Hold so that pressing a key retriggers the LFO. This lets
users do stuff like trigger a random constant voltage at every note-on
message using a noise waveform. If you want two LFOs, simply add
two oscillator modules. Enable Smooth Peaks in the Properties win-
dow—it is the default, but check to confirm this. This option prevents
ripples at the waveform edges. Connect a List selector to each Wave-
form selector. Set Pulse Width to 0 to conjure a symmetrical pulse
wave, or insert a dedicated pulse width knob for each LFO. The Rate
knobs used in this synth are the same as those in the Effects chapter, so
we’ll spare you another structural diagram. The only difference is that
these knobs’ high value is 30 Hz (1.1255 volts). The modulation cir-
cuit’s level adjustment determines modulation depth, as you shall soon
see.
155

Chapter 3 Stepping Up to Synthesis

156
Figure 3.43: Low-frequency oscillators

Heads up:
❖ By default, an LFO is monophonic unless a polyphonic signal

arrives at an input. If you wish to assign an LFO for each voice, you
could connect the MIDI to CV module’s Gate plug to the oscillator’s
PM Depth plug and set the Phase Mod plug to 0. This does not
affect the LFO waveform, but it does coerce the LFO into doing the
polyphonic thing. Be aware that this polyphonic capability takes a
bite out of the CPU pie even when the LFO isn’t modulating.

❖ If you wish to retrigger the LFO’s waveform at every note, patch the
MIDI to CV module’s Gate signal to the oscillator’s Sync plug. This
is another case of coerced polyphony. If you prefer a monophonic
LFO, drop a Voice Combiner module from the Insert > Special
group in front of the Sync plug. It squeezes the signal into mono
format.

❖ Combining an LFO and a Sample and Hold module can conjure
interesting effects. Try this on for size: Insert a Sample and Hold
module after the LFO and connect the Gate signal to the S&H mod-
ule’s Hold plug. Then it retriggers only when you hit a note. The
LFO puts out a polyphonic signal. If you prefer a monophonic sig-
nal, use a Voice Combiner module to convert the Gate signal. Use
an S&H module on a noise waveform to trigger random constant
voltages in response to every note-on message. Figure 3.44 pictures
a monophonic S&H LFO structure.

Figure 3.44: A monophonic S&H LFO

Less Is More with Subtractive Synthesis
Some synths offer a delay parameter for the LFO to determine the time
the LFO modulation takes to reach peak level from 0. You can do this
too by applying a separate envelope, triggered by the Gate signal, to the
LFO that controls signal level. Keep an eye on those polyphonic signals,
though.

Go-to prefabs: Synthesis > SnH LFO

Envelopes

A little structural modification is all it takes to use the filter envelope as
another modulation source. Figure 3.45 shows a modified version of
the mock exponential envelope. The EnvMod plug controls the enve-
lope’s level, and sends the signal to the Mod Out plug. It modulates the
filter’s pitch much like in the unmodified version. The difference here
is that the Env Out plug takes its source from the full level envelope,
before the level adjustment. This means it can serve as a modulation
source.

Figure 3.45: A souped-up filter envelope

Adding more envelopes is easy; simply connect the Gate signal to an
ADSR module so every note attack triggers an envelope. Your users and
their CPUs may rejoice if you insert a Level Adj module before the
ADSR’s Gate plug with a Switch wired to its other input. This lets users
switch unused envelopes off to save CPU power.

MIDI Messages

MIDI commands come in many guises. Called velocity, mod wheel,
pitch bend, control change, and aftertouch messages, all serve as mod-
ulation signals. The MIDI to CV module delivers velocity and after-
touch values direct. SynthEdit’s MIDI folder offers a Controller module
that affords access to the others. It sports default outputs for aftertouch
and pitchbend, as well as four user-definable outputs for MIDI CC
(control change) messages. An individual Type selector for each lists
157

Chapter 3 Stepping Up to Synthesis

158
available control change messages. This list also describes the typical
functions of some CC messages, like 1—Mod Wheel, 2—Breath, 7—
Volume, and so on. You can set these to a fixed CC number, or let your
users freely select the number of CC messages used as modulation
sources.

Figure 3.46

Making a Modulation Matrix

Featuring source and destination selectors, a modulation matrix maps
one or more routes. The schematic diagram in figure 3.47 shows one
mod matrix route. It adjusts the selected source’s level according to
modulation depth, and routes the signal to the specified destination.

Figure 3.47: Schematic diagram of mod matrix signal routing

Figure 3.48 shows how this diagram translates to a SynthEdit structure.
The prefab maps two modulation routes. The first route’s sources are
None, LFO1, Filter Env, Velocity, Aftertouch, and Modwheel. The sec-
ond’s are the same, though LFO2 is used rather than LFO1. These
sources were connected to the Spare Input plug of the switch that
selects the modulation source. The signal runs from the switch to a
Level Adj module, with the Depth knob adjusting its level. It then feeds
a 1 → Many switch that selects the modulation destination. To add des-

Less Is More with Subtractive Synthesis
tinations, simply connect the Spare Output plug to the desired destina-
tion plugs. They will then appear in the list. The Pulse Width and Pitch
plugs connect to the Pulse Width and Pitch plugs of both oscillators,
meaning that a source can be routed to two or more destination plugs
at the same time. If you wish to rename the source and destination
slots, open the switches’ Properties window and change the labels.

Figure 3.48: The modulation matrix’s structure

The Depth knob bases on the Knob Sm prefab in the Controls folder.
Figure 3.49 delineates its structure. The knob’s range is 0 to 10 volts.
Converted to volts, the signal feeds both inputs of a Level Adj module.
Much like the Level Adj used in the envelope, it transforms the linear
scale into a mock exponential scale for greater tweaking precision, par-
ticularly for low values. Next comes a switch enabling users to invert
the signal. Now, what is that good for? Say the envelope addresses the
oscillators’ pitch. By default, the modulation invokes a positive pitch
change. The Invert switch lets your users select a negative envelope. Of
course, assigning the knob a control range of −10 to 10 volts also does
the trick, but then the Level Adj module converts all negative levels to
positive levels. Using an invert switch is quite convenient for setting
the modulation depth.
159

Chapter 3 Stepping Up to Synthesis

160
Figure 3.49: The Depth knob’s structure

Take a moment to examine the source plugs in figure 3.48 and find the
None setting. To enable it, a connected Fixed Values module produces a
constant 0 volts. This switches off all modules in the path, which light-
ens the CPU load. We created the Velocity and Aftertouch sources by
connecting these MIDI to CV plugs to the switch’s Spare Input plug.
The filter envelope’s Env Out plug supplies the Filter Env source. The
Controllers module’s first controller, which is the Mod Wheel by
default, delivers the modwheel input signal. Looking for inspiration for
your GUI layout? Then look no further than the modulation matrix in
figure 3.50.

Figure 3.50: A potential GUI layout for the mod matrix

Go-to prefabs: Synthesis > PolySynth10

Heads up: David Haupt offers a module pack for creating versatile
modulation matrices. It lets users adjust the modulation amount for
each target individually. You’ll find a screenshot in figure 3.51. See the
module’s pack documentation for details.

Less Is More with Subtractive Synthesis
Figure 3.51: DH_MatrixPak screenshot

Finalizing Your Synth

Revealing with Readouts
You may recall from the Effects chapter that you can design readouts by
assigning sub-controls to all knobs. The EQ prefabs’ structure provides
a good platform for building a cutoff readout. Use a KDL Volts2Hz
module to convert voltage to Hz. An excellent choice of control range,
0.540568 and 10.64385 volts equal 20 and 22,000 Hz, respectively. We
limited resonance to 0 to 9.8 volts. To convert this range to a 0-to-100 %
scale, divide it by 0.098 using a Float Scaler so 9.8 volts equals 100 %.
To convert the keyboard tracking amount to percentages, simply divide
by 0.01. Your control features’ layout may end up looking something
like figure 3.52. For more on these knobs’ internal structure, consult
the included prefabs.

Figure 3.52: A filter section’s control panel

You can create similar controls for oscillators. Divide the value by
0.083333 to show the fine-tuning amount in semitones. Feel free to edit
the List Entry2 prefab’s panel layout. To this end, open the List Entry2
container’s panel window. Then arrange the features—arrows, labels,
and list box—any way you see fit, perhaps like the example in figure
3.53.
161

Chapter 3 Stepping Up to Synthesis

162
Figure 3.53: An oscillator section’s control panel

Heads up: Clicking a list box opens a drop-down menu. If you wish to
prevent this and use the Dropdown List sub-control strictly for readout,
cover it with a transparent bitmap.

Adding Effects
Many digital and VSTi synths offer effects ranging from simple delay
and chorus to elaborate racks brimming with saturation, delay, reverb,
flanger, and phaser effects. Place saturation and distortion effects after
the filter if you want to saturate each voice. Insert a global distortion
effect after the VCA and a Voice Combiner module. Most other effects
perform best when placed after the VCA. If you use nonlinear modules
in the effect chain, cloning creates one for each voice, possibly wasting
CPU power. A Voice Combiner module prevents this problem.

The Effects chapter x-rays the effects’ internal structure, so we won’t
cover the same ground here. To ensure your synth delivers the best per-
formance with effects, be sure to get a handle on sleep mode, the vari-
ous routings, and polyphonic cloning. The “Making the Most of Perfor-
mance” chapter covers these topics in details; be sure to read it care-
fully. Also note that effects routing influences tone; for example, delay
and chorus configured in a parallel array sound different than in a
serial loop.

Less Is More with Subtractive Synthesis
Adding Patches
Adding patches to your synth is easy: Load a Patch Select module from
the Insert > MIDI folder, and connect the synth’s MIDI input to the
MIDI In plug. Though the wiring is invisible, this module connects to
all sliders, knobs, and other GUI features, and automatically adjusts
them in response to a MIDI patch change message. If you insert a
Patch Select module, a patch select bar appears at the top of the panel
window, which figure 3.54 shows so well. It lets you create and navigate
synth patches. Note that this bar does not appear in the exported plug-
in. The registered version of SynthEdit stores up to 128 patches for
your synth; the shareware version stores 16 patches.

Figure 3.54: A patch select bar

MIDI Automation
Now you know how to assign MIDI control change messages to differ-
ent plugs. SynthEdit also offers a convenient way of assigning MIDI
messages to sliders, knobs, and other GUI features—MIDI automa-
tion. To take advantage of it, you must first load a MIDI Automator
module to the prefab, and connect the MIDI input to the Automator’s
MIDI In plug. A MIDI Automator, like the Patch Select module, con-
nects to the control features on the GUI via invisible “wires”.

Three types of MIDI messages serve to automate controls—control
change (CC), registered parameters (RPN), and non-registered parame-
ters (NRPN). Control changes are MIDI channel messages comprising
a controller number and a data value used to adjust a control feature.
The MIDI standard calls for 128 controllers; Table 3.2 lists their stan-
dard definitions.
163

Chapter 3 Stepping Up to Synthesis

164
Table 3.2: Standard MIDI controller numbers

0 Bank Select 67 Soft Pedal

1 Modulation Wheel 68 Legato Footswitch

2 Breath Controller 69 Hold 2 Pedal

3 Undefined 70 Sound Variation

4 Foot Controller 71 Sound Timbre (Resonance)

5 Portamento Time 72 Release Time

6 Data Entry MSB 73 Attack Time

7 Main Volume 74 Sound Brightness (Cutoff)

8 Balance 75–79 Sound Controllers 6–10

9 Undefined 80–83 General Purpose 5–8

10 Pan 84 Portamento Control

11 Expression 85–90 Undefined

12 Effect Control 1 91 Effect 1 (Reverb) Level

13 Effect Control 2 92 Effect 2 (Tremolo) Level

14–15 Undefined 93 Effect 3 (Chorus) Level

16–19 General Purpose 1–4 94 Effect 4 (Detune) Level

20–31 Undefined 95 Effect 5 (Phaser) Level

32 Bank Select (LSB) 96 Data Increment

33 Modulation Wheel (LSB) 97 Data Decrement

34 Breath controller (LSB) 98 NRPN LSB

36 Foot Pedal (LSB) 99 NRPN MSB

37 Portamento Time (LSB) 100 RPN LSB

38 Data Entry (LSB) 101 RPN MSB

39 Volume (LSB) 102–119 Undefined

40 Balance (LSB) 120 All Sound Off

42 Pan position (LSB) 121 Reset All Controllers

43 Expression (LSB) 122 Local Keyboard

44 Effect Control 1 (LSB) 123 All Notes Off

45 Effect Control 2 (LSB) 124 Omni Mode Off

46–63 LSB for Controllers 14–31 125 Omni Mode On

64 Hold Pedal 126 Mono Mode On

65 Portamento 127 Poly Mode On

66 Sostenuto

Less Is More with Subtractive Synthesis
Heads up:
❖ The table above lists standard definitions, but manufacturers’ MIDI

implementations may differ.

❖ Controller data ranges from 0 to 127. Controllers 0 to 31 denote the
MSB, or most significant bits; controllers 32 to 63 denote LSB, or
least significant bits. MSB usually suffice to define a controller; if
not LSB data are also sent to provide a more precise definition. Not
all manufacturers use LSB.

❖ Avoid using bank select, data entry, data increment/decrement,
RPN, NRPN, and controllers higher than 120 for controlling a synth.

RPN and NRPN messages consist of control change messages. The
controller transmits a pair of CC messages to select the RPN/NRPN
number. It sends the parameter number’s higher 7 bits as CC 101/99,
and the lower 7 bits as CC 100/98. Then it sends the actual data as CC 6
(data entry), or sometimes as CC 6 and CC 38 (data entry MSB and
LSB). Sending 127 to both CC 101/99 and CC 100/98 usually resets the
RPN/NRPN parameter number. SynthEdit handles such messages
automatically; you need only set the parameter number to handle
NRPN/RPN messages.

You’ll deal with two general types of GUI features. Slider and List Entry
are individual modules, and the other GUI features use sub-controls to
create the control prefab. You can automate Slider and List Entry mod-
ules in the Properties window. Figure 3.55 shows a Slider’s Properties
window. The MIDI Controller ID option assigns a MIDI controller
from the list. MIDI NRPN does the same for NRPN messages.
165

Chapter 3 Stepping Up to Synthesis

166
Figure 3.55: Assigning a MIDI CC to a slider

Features with sub-controls work differently. Right-click a container to
view its Automation menu options. The Automation function detects
Patch Mem modules inside the container, and lets you assign a MIDI
controller or RPN or NRPN message number to the Patch Mem. Here’s
an example: Figure 3.56 shows the structure of the Mod Wheel prefab
found in the Insert > Controls folder.

Figure 3.56: The Mod Wheel prefab’s structure

Less Is More with Subtractive Synthesis
The structure features a Patch Mem–Float module that stores the mod
wheel image’s position. Right-click the Mod Wheel prefab’s container,
select Automation, and the panel shown in figure 3.57 appears.

Figure 3.57: The Mod Wheel prefab’s Automation panel

This Automation panel lists all Patch Mem modules, their values, and
its assigned MIDI message. Label indicates the Name plug’s value. If
you connect a Text Entry2 module to the Patch Mem, it will show the
name you chose instead, perhaps something like Cutoff. The Control-
ler default is <none>. In the Mod Wheel prefab, it is CC number 1,
which is the mod wheel. Click the Controller box and the Learn and a
Set options appear. Learn assigns the Patch Mem to a controller auto-
matically. Click Set, and a panel appears that lets you choose the MIDI
message type (CC, RPN, or NRPN) and number.

Ignore PC (program change) works much like it does for Slider and
List Entry modules. When enabled, an incoming program change does
not affect the control feature’s value. When Private is enabled, Synth-
Edit hides controls earmarked private from the host, though the host
will show all other control features.

Heads up:
❖ You must load a MIDI Automation module into the structure to

enable automation.

❖ Some prefabs in this book use a Patch Mem–Text to display labels. If
you wish to configure automation, be sure to assign the MIDI mes-
sage to the right Patch Mem. Setting the Private option to True hides
the controls from the host.

❖ The Automation panel also lists Waveshaper and Waveshaper2 mod-
ules. This means if you don’t set Private to True for ADSR knobs’
Waveshapers, the host will list them as text parameters.

If you configure automations, do your users a favor and mention the
MIDI controller numbers in the synth’s documentation.

David Haupt’s DH_BasicModulePak offers a MIDI learn module set
called DH_MIDIControlMeister. It lets you endow your synth with
learning capabilities. See the documentation for more on this.
167

Chapter 3 Stepping Up to Synthesis

168
Getting Funky with FM Synthesis

Introduction

What happens when a sine LFO modulates a sine wave’s frequency?
Right, you get a vibrato effect. Now what happens if you boost the mod-
ulator’s frequency so much that it is an audible frequency instead of an
LFO? The vibrato effect evaporates in a poof of sonic smoke, and an
intricate new timbre appears in its place. That’s the short version of
how John Clowing discovered FM synthesis in the 1960s. Once he
refined and sold it to Yamaha, dozens of synths powered by FM tech-
nology surfaced, the most famous being the DX7.

Let’s look at how FM works. Figure 3.58 depicts a rudimentary FM
setup in SynthEdit. Two oscillators produce sine waves. One oscillator’s
output connects to the other’s Phase Mod plug, making it very easy to
conjure frequency modulation. Rather than modulating the oscillator’s
pitch, this setup modulates the waveform’s phase to simulate frequency
modulation. The DX7 used the same method. When one oscillator is
wired to the other’s Phase Mod plug, PM depth controls the phase/fre-
quency modulation amount.

Figure 3.58: The Mod Wheel prefab’s Automation panel

In FM jargon, the modulated operator is the carrier, and the other is the
modulator. The terms and technology are the same as in broadcasting,
expect in the latter the carrier frequency usually lies in the MHz range.
In FM synthesis, the carrier is an audible waveform.

Getting Funky with FM Synthesis
Figure 3.58 tells you that the carrier’s pitch is 6 volts, or 880 Hz. A pure
sine wave’s frequency spectrum is merely a single spike. The analyzer
shows a spike at 880 Hz with neighboring harmonics called sidebands.
Created by the frequency modulation effect, sidebands’ amplitude and
relationship are determined by the modulator’s frequency and FM
depth. Varying frequency and depth creates different timbres ranging
from metallic sounds to brass and bell-like sounds.

Heads up: Perhaps some of these tones conjure fond (or not so fond)
memories if you owned a Sound Blaster, Sound Blaster Pro, or Sound
Blaster 16 audio card. Their audio cards featured an FM synthesizer
chip (OPL2/OPL3) licensed from Yamaha that produced MIDI sounds
of a similar flavor.

Go-to prefabs: Synthesis > Simple FM Example

Experimenting with Modulator and Carrier Algorithms

Yamaha DX series synths usually offer four or six operators for use in
many different configurations. And they enable oodles of options for
defining operators as modulators and carriers. What’s more, a modula-
tor can even modulate itself by way of a feedback loop. With so many
routing and feedback alternatives, the possibilities for connecting these
operators are endless. Yamaha chose the most musical setups, and
called them algorithms. The six-operator DX7 features 32 different
algorithms, each comprising a unique operator routing.

Figure 3.59 shows the Yamaha DX7’s #1 algorithm. The six operators
are grouped in two stacks, each with one carrier and one or more mod-
ulators. The lowest operator in each stack is a carrier; those above it are
the modulators.
169

Chapter 3 Stepping Up to Synthesis

170
Figure 3.59: #1 with a bullet: A Yamaha DX7’s algorithm

In this setup, only operator 1 and operator 3 are audible; the others
merely modulate these two operators’ frequencies. Operator 2 modu-
lates operator 1’s frequency. The other stack is less straightforward.
Operator 6 modulates both operator 5 and itself via a feedback loop.
Operator 5 modulates the frequency of operator 4, which modulates the
carrier, operator 3. This sophisticated modulation scheme creates com-
plex timbres. See the Yamaha DX7 manual if a desire to discover more
algorithms overwhelms you.

SynthEdit has a couple of—noun alert—modulation configuration lim-
itations. One is that it lacks sample feedback, ruling out feedback loops.
The other is that if you pre-wire a structure for a given algorithm, it lim-
its the synth’s sonic capabilities. You can overcome this barrier by using
a sophisticated modulation matrix like the mod matrix used in many
FM synth plug-ins. Case in point: Say operator 2 modulates operator 1.
If you try configuring a setup where operator 1 modulates operator 2,
you will a create feedback loop, which SynthEdit won’t tolerate. How-
ever, operator 3 can still modulate operators 1 and 2. The no-brainer
rule is any operator can only modulate operators below it, so operator 5
could modulate operators 1, 2, 3, and 4.

This four-operator setup features in figure 3.60. All operators can mod-
ulate any operators below them, and their signals may be routed to the
master output. This means all operators can act as carriers, and all
operators bar operator 1 can act as modulators. Though the setup lacks
feedback loops, it is still flexible.

Getting Funky with FM Synthesis
Figure 3.60: A versatile algorithm with four operators

Figure 3.61 depicts the modulation matrix of the setup in figure 3.60.
Lacking the main diagonal, this matrix’s form is triangular. The circles
signify potential modulations. For instance, the circle in row 3, column
2 means operator 3 can modulate operator 2. The missing main diago-
nal would entail a feedback loop, and that’s a no-no.

Figure 3.61: Modulation matrix for the flexible algorithm
171

Chapter 3 Stepping Up to Synthesis

172
Sidling Up to Sidebands

Let’s define a carrier’s frequency as C, and the modulator’s as M. The
modulator introduces harmonics to the carrier frequency. The upper
sidebands always appear at the following frequencies:

C + M, C + 2M, C + 3M, C + 4M, and so on

And the lower sidebands appear at these frequencies:

C − M, C − 2M, C − 3M, C − 4M, and so on

Say the carrier is a 1,000-Hz sine wave, and the modulator is a 200 Hz
sine wave. The carrier’s ascending sideband frequencies are 1,200 Hz,
1,400 Hz, 1,600 Hz, and so on. Its descending sidebands are 800 Hz,
600 Hz, 400 Hz, eventually reaching 0. Sidebands in the negative
domain are reflected, that is, they bounce back from 0. We can treat
them as positive numbers and represent them as such with absolute
value signs. For example, if C = 1 and M = 2, the first sideband is at
|C − M| = |1 − 2| = |−1| = 1. A carrier and a modulator sharing the same
frequency generate a harmonic at 0 Hz, and by extension a constant
DC offset that is visible on the analyzer. A simple one-pole high-pass
filter applied at around 20 Hz prevents this.

We often express carrier and modulator frequencies as C:M or M:C
ratio, because they define the sidebands. Lower sidebands do not occur
when the C:M ratio is 1:M (the carrier is the fundamental frequency),
provided that M ≥2 or M = 1. If M = 1, then the first lower sideband is
1 − 1 = 0 Hz, which is a DC offset. The second lower sideband is
|1 − 2 ∗ 1| = |−1| = 1, or a frequency identical to the carrier’s. If M is
greater than 2, then all lower sidebands lie above the carrier frequency,
which rules out lower sidebands. Table 3.3 lists some C : M ratios and
their first ten sideband frequencies.

Getting Funky with FM Synthesis
Table 3.3: A chart full of C:M ratios and their first ten sideband frequencies

If a sideband’s frequency lies above the Nyquist frequency, it is mir-
rored—that is, aliased—back into the 0-to-Nyquist range. This effect
increases with the FM depth setting. You can confine it somewhat by
limiting the FM depth amount. Waveforms other than a sine tend to
exacerbate aliasing.

Sidebands’ amplitude hinges on modulation depth. They are 0 without
frequency modulation, leaving only the carrier. Ever more sidebands
appear as FM depth increases. The FM depth amount determines the
number of audible sidebands and thus the modulated signal’s band-
width. Vary this amount over time using an envelope, and you can
shape the modulated sound’s spectral component. Put simply, the car-
rier envelope determines the sound’s amplitude over time, and the
modulator envelope determines the harmonic content (timbre) over
time, behaving much like a filter envelope.

C M 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10 11

1 2 3 5 7 9 11 13 15 17 19 21

1 3 2 4 5 7 8 10 11 13 14 16

1 4 3 5 7 9 11 13 15 17 19 21

1 5 4 6 9 11 14 16 19 21 24 26

1 6 5 7 11 13 17 19 23 25 29 31

1 7 6 8 13 15 20 22 27 29 34 36

1 8 7 9 15 17 23 25 31 33 39 41
173

Chapter 3 Stepping Up to Synthesis

174
Fabricating a Four-operator FM Synth

Assembling Operators
Now that we know what important ingredients envelopes are, let’s look
at how we can use them to assemble an operator. In DX7, every opera-
tor features a dedicated five-stage envelope that lets us fine-tune vol-
ume and timbre curves. So grouping an oscillator and an envelope gen-
erator together to form an operator seems logical enough. Figure 3.62
shows a structure containing an oscillator, a tuner, an envelope, and a
VCA. Imaginatively named Operator, you can copy and paste this con-
tainer to create clones.

Go-to prefabs: Synthesis > FM Operator

Figure 3.62: The Operator’s structure with a tuner, envelope, and VCA

This structure employs a four-stage ADSR envelope. To create more
sophisticated envelopes, use one of the third-party envelope generator
modules with more stages.

Once you have created this structure and made three copies, add a
MIDI to CV module for triggering the envelopes and controlling the
oscillators’ pitch. Connect the Gate and Pitch plugs to the operator’s
Gate and Pitch plugs as pictured in figure 3.63. If velocity-sensitive
operators like DX7’s sound good to you, connect Velocity to the opera-
tor’s Overall Level plug. Though in a real-world synth conjuring differ-
ent velocity response curves requires velocity level processing, this
example sticks with a streamlined setup to keep things simple.

Getting Funky with FM Synthesis
Figure 3.63: Connecting MIDI to CV and an Operator

The next chore is adding sliders and list entries to control the detuner
and envelope. Connect list entries to the Octave and Note plugs, and a
slider to the Pitch plug for fine pitch tuning. This prefab’s Fine slider
has a range of −0.0833333 to 0.083333, as in the previous prefabs.
Again, we used basic sliders for the Attack/Decay/Sustain/Release
plugs for simplicity’s sake. Now drop a Level Adj module in after the
Output plug to let your users adjust the operator’s output level. This
output is destined for the main output mixer as shown in figure 3.64.
All you need to do now to create a simple additive synth is stack four of
these operators and connect the outputs to a mixer. Check out the Syn-
thesis > FM1 prefab to see the full structure.

Figure 3.64: Adding controls for the operator

Go-to prefabs: Synthesis > FM1
175

Chapter 3 Stepping Up to Synthesis

176
Adding a Modulation Matrix
Figures 3.60 and 3.61 show a nifty modulation structure. If you wish to
build one too, create a separate container for a tidier setup. Connect
operators 2, 3 and 4 to the container. Be sure to tap the operator’s initial
output signal, and not the post Level Adj signal. The latter determines
this operator’s output level only. If it is set to 0, the operator serves as a
modulator only, without issuing an actual output signal. You need six
inputs to determine modulation amount (2 > 1, 3 > 1, 3 > 2, 4 > 1, 4 > 2
and 4 > 3). Figure 3.65 outlines the modulation matrix’s structure. Six
Level Adj modules adjust the modulators’ levels according to the depth
values. The first Level Adj sets operator 2’s level according to 2>1
Depth, and sends it to operator 1’s phase modulator. The second Level
Adj sets operator 3’s level according to 3>1 Depth, and also sends it to
operator 1’s phase modulator. The third Level Adj sets operator 3’s level
according to 3>2 Depth, and sends it to PM operator 2, and so forth.
The six Level Adj modules thus trace the six modulation paths shown
in figure 3.60. Be sure to connect the PM Op1, PM Op2, and PM Op3
outputs to the operator 1, 2, and 3’s Phase Mod plugs.

Figure 3.65: The modulation matrix’s structure

Of course you need a fistful of knobs to actually use the modulation
matrix. Wire six to the Depth knobs, preferably in the order shown in
figure 3.61. Figure 3.66 depicts the mod matrix container with the
knobs for easy reference. Once you have connected all the components,

Getting Funky with FM Synthesis
your synth’s basic FM structure is up and ready to run. You may wish to
drop in a one-pole HP filter between the mixer and main output. Set to
about 20 Hz, it removes any DC offset generated by 0 frequency side-
bands. To see the complete structure, check out the FM2 prefab. Note
that the PM Depth knob adjusts Phase Mod depth. This means a PM
Depth setting of 5 volts and modulator Level Adj setting of 10 volts
yield the same amount of FM as a PM Depth setting of 10 volts and a
modulator Level Adj setting of 5 volts. If you wish to extend the modu-
lation depth range, either increase the PM Depth value for all opera-
tors, or assign a wider range to the modulation depth knobs. And if you
wish to convert the linear range to an exponential scale using a Level
Adj module, setting the Depth knobs’ range to 0 to 10 volts and increas-
ing the PM Depth knob’s amount for the operators sounds like a very
good idea.

Go-to files: Synthesis > FM2

Figure 3.66: The modulation matrix’s structure, again
177

Chapter 3 Stepping Up to Synthesis

178
Designing the User Interface

Figure 3.67: A streamlined user interface with the default skin

Figure 3.67 shows a basic user interface featuring the default GUI. Feel
free to customize and skin it, and replace standard controls with sub-
controls. This prefab lacks modulation matrix labels. Your users are
sure to appreciate some signposts identifying modulation knobs, so
why not create a skin or background image with the operator numbers
written at the top and left of the modulation matrix. Note that the oper-
ators’ order in the structure is reversed, that is, operator 4 is at the top
and operator 1 at the bottom.

Go-to prefabs: Synthesis > FM3

More Good Things to Do
The setup above is a basic four-operator FM synth structure. Extend it
to six or more operators if you wish, but be sure to abide by the no-feed-
back rule.

Add modulation tools such as LFOs to your heart’s content. You’ll find
exhaustive—if not exhausting—discussions of these features in other
chapters, so we’ll spare you a rehash here.

Getting Funky with FM Synthesis
Some synths slap added filters on the main output signal. Try it; you
may like this hybrid synthesis.

Insert after the mixer any external effect that floats your boat—delays,
reverbs, chorus effects, ad infinitum.
179

4
Making the Most of
Performance
A processor’s resources are finite, so the burden a plug-in places on the
CPU matters. Polyphony hinges on CPU usage, and high loads limit
the resources the host program can devote other synths and effects.
Though modular synthesis confines your options for optimizing plug-
ins—certainly in comparison to hand-coded plug-ins—you’ll be
delighted to learn some improvement is possible.

Early versions of SynthEdit were gluttons for CPU performance, but its
author curbed its appetite in later versions. Now when a signal is inac-
tive, it goes to sleep to conserve CPU. Introducing GUI modules
enabled further improvements. GUI modules process signals at about
20 Hz rather than the audio rate, significantly boosting GUI perfor-
mance.

What’s Sleep Mode?

Signals generally come in two categories, constant and changing volt-
ages. An inert slider produces constant voltage; an oscillator generating
sound produces changing voltage. Most built-in modules detect if
incoming voltage is constant or changing. If it’s constant, they shut
down audio processing to save CPU. The module’s Properties window
signals this by showing CPU usage has dropped to 0 % as shown in fig-
ure 4.1.

Figure 4.1: A module in sleep mode
181

Chapter 4 Making the Most of Performance

182
Modules in sleep mode usually issue a status signal telling the subse-
quent module in the chain that it’s bedtime. Soon all the modules in
the chain go to sleep. The drawback is that the CPU load briefly spikes
when a static signal changes, possibly provoking an audio glitch if the
system is running at peak load. If the signal doesn’t demand updating
at the audio rate, use GUI modules instead to prevent glitches. And if
suitable GUI modules are available, it’s always wise to calculate control
signals on the GUI side.

There are many ways to detect if a module’s output signal is static. A
Monitor (Insert > Special > Monitor) module shows ST_STATIC to
indicate static signals, and ST_RUN for changing signals as depicted in
figure 4.2.

Figure 4.2: A Monitor module

Another method is to connect an Inverter module to the plug, and
check if the Inverter module’s CPU use drops to 0 %. If so, the Inverter
module is in sleep mode, indicating a signal with a static status. The
third-party module sc:Status also determines a signal’s status. It puts
out 10 volts if the signal is active, and 0 volts if it is not. Connect it to an
LED indicator, and the signal’s status is easily seen. Figures 4.3 and 4.4
map out this prefab.

Figure 4.3

Go with Better Flow Control
Figure 4.4: Determining status using sc:Status

Go-to prefabs: Optimization > Active Detector

Native modules detect sleep mode, but some third-party modules may
not because the function is not compulsory for SE. If you suspect a
patch is consuming more than its fair share of CPU power, a sleep
mode detector may help track down the culprits.

Go with Better Flow Control

Of the two types of switches, a 1 → Many switch almost always beats a
Many → 1 switch. Figure 4.4 shows two configurations that select an
effect to process a signal. In the first setup, the active input signal
enters the switch. The switch sends this signal to the output specified
by the Choice plug. What’s more, it automatically sends a sleep mode
signal to all other output plugs to switch off unused effects, provided
that the modules in the container support sleep mode.

Figure 4.5: Possible flow control routings

In the second setup, the active signal enters through the Input pin. It
then goes to all three effects for processing. This wastes beau coup
CPU because the Many → 1 switch routes just one signal to the output.
So, whenever possible, use the 1 → Many switch rather than the
Many → 1 switch. The same goes for SV Filters. Figures 4.6 and 4.7
depict two routing options for choosing a state variable filter mode. The
second uses less than half the CPU power of the first. The reason is,
the SV Filter works fine for one output, but the processing load doubles
183

Chapter 4 Making the Most of Performance

184
with several outputs connected. The switch in figure 4.7 selects the best
SV Filter for the task at hand, and puts all other filters to sleep to con-
serve CPU. And you can optimize SV Filters further, as you shall soon
discover.

Figure 4.6: Possible SV Filter choices

Figure 4.7: Suggested SV Filter choice

Switches also serve to bypass effects. The switch in figure 4.8 routes the
signal through unchanged, sets the effect to sleep mode, or sends the
signal through the effect container.

Figure 4.8: A bypass switch

Optimizing Effects
Figure 4.9 maps out a similar structure that lets users adjust levels for
delay, reverb, chorus, and flanger effects. Adjusting the level before the
effect—that is, backing the Level slider off to 0—turns the effect off.
When a Level Adj module receives zero input, it puts out a static zero
signal and goes to sleep, switching the effect off. If you want an on/off
switch, replace the slider with a 0/10 volts switch or button.

Figure 4.9: A Level Adj employing sleep mode

Optimizing Effects

VST effects pose two problems that beg optimization. One is that a
plug-in always interprets its input as a changing signal, so it consumes
the same amount of CPU whether it receives a signal of not. Placing a
Scoofster AutoSleeper module after the input inside the main con-
tainer fixes the problem. It waits for an incoming audible signal, and if
it doesn’t detect one over a reasonable period, puts all subsequent mod-
ules to sleep to conserve CPU power.

Figure 4.10: A stereo Autosleeper module

Silence poses the other problem. Sometimes a spike or constant load
occurs when a sound fades out, sending CPU consumption sky high.
Denormal numbers, that is, inaudible signals with very low value,
cause this surge. When the processor detects such small numbers, it
processes them with greater precision. The elaborate math slows calcu-
lations to a crawl, and wastes processing power because the signals are
inaudible. Delay, filter, and other modules with feedback circuits can
185

Chapter 4 Making the Most of Performance

186
produce denormal numbers. Native modules remove denormal sam-
ples, but third-party modules may have denormal issues. If you come
across a likely suspect, use a Special > Denormal Detector module to
detect denormal numbers, and a Special > Denormal Cleaner module
to eliminate them. An AutoSleeper may also curtail denormal effects.
However, if CPU performance spikes after the sound fades and noth-
ing you do resolves the issue, a module may have an inherent denor-
mal number problem. If you have good cause to believe you have dis-
covered a denormal problem in a third-party module, try contacting the
developer to report it.

Optimizing Synths

Polyphony

Nothing whets synths’ appetite for CPU like polyphony, as each new
voice begets clones clamoring for added processing. So, chose your
polyphony wisely. Too many voices tax your CPU unnecessarily. Chang-
ing the number of voices on the fly is not an option in SynthEdit
v1.0150, so define the polyphony in the main container. It’s a good idea
to slap a Mono mode switch on the interface to let your users lighten
the CPU load by opting for mono mode.

Envelope Length

A voice usually remains active until the VCA envelope fades to 0.
Longer envelopes means voices are slower to fade, and more simulta-
neously active voices means higher CPU loads. To define a load thresh-
old, simply set the amplitude envelope’s release time accordingly. If
you limit release time to 9 volts rather than 10, a voice fades for no
longer than 5 rather than 10 seconds. Bear in mind, though, that this
also limits the synth’s sonic potential somewhat.

Linear vs Non-linear Modules

You may recall from the introductory chapter the difference between
linear and non-linear modules: A linear effect’s processing sequence is
irrelevant. It can first process voices separately and then mix the signals
together, or mix the voices together first and process the composite sig-
nal, yielding the exact same result. Linear modules include Delay2,
Pan, and Level Adj. Not so with non-linear modules: Their clones pro-
cess each voice separately. Take a VCA’s envelope. It modulates every

Optimizing Synths
voice individually, making it non-linear; ditto for waveshaper modules.
The rule of thumb is that linear modules at the end of a signal path are
not cloned, so they don’t consume as much power as cloned modules.
Figure 4.11 shows an example.

Figure 4.11: Linear vs non-linear modules

Internal definitions designate the oscillator and VCA as non-linear, so
they are cloned in this structure. The Delay2 module, in turn, is linear,
so its signal is mono. The Delay2 module in figure 4.12 sits between an
oscillator and a VCA, which are non-linear modules. This imposes
polyphony on Delay2, which may waste CPU. Of course, a structure
such as this may be intentional, for example, if you want the oscillator’s
pitch to modulate a voice’s delay time. Note that the CPU graph at the
Properties window’s top left employs dots to signify polyphony and the
actual number of voices in a module.

Figure 4.12: A linear module bookended by non-linear modules
187

Chapter 4 Making the Most of Performance

188
Forced Mono

A Special/Voice Combiner module lets you confine cloning to conserve
CPU power. It combines incoming voices and shoehorns the compos-
ite signal into mono format. Say you drop a Voice Combiner module in
front of a distortion module. This economizes on CPU, but yields a dif-
ferent flavor of distortion reminiscent of a guitar stompbox because the
effect distorts the composite signal rather than individual voices.

Less Is More, Usually

If two or more solutions yield the same results, the option with fewer
modules is usually your better choice. Take Ralph Gonzalez’s Quadratic
module: It does the math for A + B ∗ X + C ∗ Y ∗ Z, which entails five
operands, three multiplications and two additions. This module con-
sumes just some 50 % more CPU performance than a single Multiply
module. Calculating this expression with Multiply modules and fixed
values takes about twice as much processing power. The reason for this
is that every module’s discrete function calls, memory management,
and so forth want a slice of the CPU pie. The same goes for filters: Fil-
ters with internally cascaded stages are usually faster than a cascaded
series of discrete filters. Case in point: Routing three single-stage
DH_MultiFilter2 modules consumes about twice as much CPU as cas-
cading three filters internally. However, in some instances a solution
with more modules is faster. Your best bet is to add up individual mod-
ules’ CPU use and compare.

Fight the Flab by Cutting Calculations

Do the Math with Waveshaper2

Fewer calculations lighten the processing load. Waveshaper2 beats
math expression evaluators and other math modules for calculating
mathematical functions with one variable. A remarkably versatile
expression evaluator, Waveshaper2 references tables to deliver results
faster than all other methods, usually. Note that the Waveshaper2 mod-
ule’s input values range from −5 to 5 volts. If you’re dealing with a dif-
ferent range, multiply it and add a constant to rescale it. Use an sc:Res-
caler module to do this easily. It calculates the amounts required for a
given range, and automatically rescales the signal. Scaling back is easily
done in Waveshaper2 by multiplying the result and adding a fixed con-
stant. If you’re dealing strictly with positive voltages, use (x + 5) in lieu

Fight the Flab by Cutting Calculations
of x. This ensures −5 translates to 0, and 5 to 10. Figure 4.13 shows an
example using a Waveshaper2 to convert pitch to Hz in the 0-to-10 volt
range. To hide the graph from the user interface, simply drop the mod-
ule into a container.

Figure 4.13: Converting pitch to Hz with Waveshaper2

Using Shared Coefficients for Stereo Biquad Filters

Dan Worall’s RBJ_Coefficients is the module for you if you wish to
reuse the same settings for a stereo biquad filter at fast modulation
rates. It calculates the values DH_BiquadFilter’s Custom mode
requires once, sparing unnecessary repetitions. Figure 4.14 illustrates
the structure.

Figure 4.14: A nifty structure module for stereo biquad filters
189

Chapter 4 Making the Most of Performance

190
Go-to prefabs:
Optimization > Stereo Biquad

Stereo Filters with Identical Settings

1 Volt/kHz mode is lighter on the CPU than 1 Volt/Octave mode
because the latter requires some heavy math—Freq = 13.75 ∗ 2Volts—to
obtain the actual frequency. If you use two filters with the same fre-
quency, the CPU-friendlier approach may be to opt for 1 Volt/kHz pro-
cessing mode and employ a KDL Volts2Hz to convert the frequency.
Divide it by 1,000—better yet, multiply it by 0.001—to arrive at kHz.
For even faster processing, try a setup similar to the structure in figure
4.13. It converts pitch to frequency once rather twice as shown in figure
4.15.

Figure 4.15: Optimized stereo SV filters

Go-to prefabs:
Optimization > Stereo SV Filter LP

Detuned Filters

A similar technique can benefit applications with two or more detuned
filters. Say you envision one filter with a cutoff frequency an octave
higher than the other’s. The straightforward approach is to feed in the
same pitch in 1 Volt/Octave mode, and add one volt to one of the two
filters. The bad news is that this entails converting the frequency twice.
So, let’s use the identity:

Fight the Flab by Cutting Calculations
2 a + 1 can be written as 2 a × 2, meaning it suffices to compute the base
frequency once, then multiply it by two to obtain the frequency an
octave higher. The rule for obtaining the multiplier for the base fre-
quency is:

D is the detune amount in octaves. If we want to detune by −1 octave,
2 −1 gives us 0.5, meaning we must multiply the base frequency by 0.5
to obtain the detuned frequency. A Waveshaper2 module gives you the
coefficient, as shown in figure 4.16.

Figure 4.16: Detuned SV filters

Note that the Waveshaper2 module does no processing when the
detune amount remains unchanged. Simple multiplication is a far
more efficient way of calculating the second filter’s pitch than calculat-
ing the frequency again with a complex mathematical function.
Though this method works with most filters, it’s unsuitable for oscilla-
tor modules. They do more calculation in 1 Volt/kHz mode, which is
due their different internal processing method.

Go-to prefabs: Optimization > Detuned SV Filters

2a+b = 2a 2b∗

x = 2D
191

5
All About Sub-controls

What Are Sub-controls?

SynthEdit’s sub-control modules are building blocks used to create cus-
tom controls for a synth or effect’s GUI. This chapter covers the basic
concepts you must master to use sub-controls effectively in your Synth-
Edit projects, and provides plenty of examples to help you get off the
ground.

A Traditional SynthEdit Control

Before we set out on our journey into the world of sub-controls, let’s
recap a native SynthEdit control’s structure and functions. We’ll use the
Slider (Insert menu: Controls) as our example. The module displays a
GUI slider control on the panel, and translates the handle’s position
into a control voltage value at the Signal Out plug (see figure 5.1).

Figure 5.1

Right-click the module, look at its Properties (see figure 5.2), and you
will see that the slider offers you several options. You can:

❖ Assign a MIDI controller for remote control

❖ Set it to ignore program changes

❖ Stake out its range using the Lo Value and Hi Value fields

❖ Change its visuals, turning it into a horizontal slider, knob, or but-
ton

❖ Show and hide its data readout and title
193

Chapter 5 All About Sub-controls

194
Figure 5.2

Now if you put the module into a container and right-click to view the
container’s Automation window, you will discover the slider controls an
automatable parameter (see figure 5.3). Move the slider with the Auto-
mation window open, and watch the parameter value change with the
slider’s position. Parameters are what ultimately control the processing
of a synth or effect, but much more on this later in the chapter.

Figure 5.3

A Typical Control Built with Sub-controls

The Knob Sm prefab from SynthEdit’s Insert menu, under controls, is
an example of a control built with sub-controls. Like the slider control,
this prefab displays a GUI control on the panel, and outputs the con-
trol’s position as a control voltage. For a peek inside the prefab’s con-
tainer, see figure 5.5.

What Are Sub-controls?
Figure 5.4

Figure 5.5

We’ll examine all these modules’ plumbing in greater detail later. For
now, a brief overview will do to let us compare sub-control-based and
native controls.

The big difference between sub-control-driven and native controls is
obvious, yet its importance is easily overlooked. The sub-control-based
control is a prefab. Why is this so important? Though you can alter a
native SynthEdit control‘s appearance, your options are limited to a
fixed selection of visual styles—button, button_sm, vslider_med, and
so forth. While you may substitute different graphic images to re-skin
each style, the number of available default controls is finite. Sub-con-
trols impose no such limitations. You can create as many types of cus-
tom controls as you want or need. The Bitmap Image module displays
any bmp or png image file, and animates multiple-frame images. A
Joystick Image sub-control serves to animate single-frame images hori-
zontally or vertically for slider handles and the like, as well as for two-
dimensional controls. Once your custom control looks and works the
way you want it to, you may simply save it as a prefab, and presto—
there you have a new control type. Save it in your SynthEdit\Pre-
195

Chapter 5 All About Sub-controls

196
fabs\Controls folder, and it will appear in your Insert menu under Con-
trols. If you acquire a taste for creating lots of custom controls, it may
behoove you to organize them in sub-folders within your Synth-
Edit\Prefabs\Controls folder.

At second glance, figures 5.4 and 5.5 reveal that the control’s graphics
comprises three parts, layered to create the knob. The knob’s body and
shiny cap are Bitmap Image sub-controls; a Tinted Bitmap Image pro-
vides scale markings. While you can create layered images using a good
graphics program, doing this on the fly within SynthEdit by combining
sub-controls affords you added flexibility. Use the panel view of the con-
trol’s container to lay out your control’s graphic features.

Let’s see how the control works. Note that in figure 5.5 the Animation
Position plugs of the Bitmap Image modules for the knob and shiny
cap connect to the Patch Mem–Float module’s Animation Position
plug. When a multiple-frame image moves, the Bitmap Image sub-con-
trol puts out a number in the range of 0.0 to 1.0, where 0.0 is the first
frame and 1.0 is the last frame of the image. Patch Mem–Float then
scales the animation position to the range specified by the Min Value
and Max Value plugs. The result goes to the Value Out plug, and the
Float to Volts module converts it into a control voltage. You’ll find this
module in the Insert menu, under Conversion.

A control based on sub-controls is easy to hide and show. Set its con-
tainer’s Controls on Parent plug (see figure 5.6) to True, and the
graphic sub-controls inside the container appear on the higher level
container’s panel. Set it to False to hide them.

Figure 5.6

This control does not display a numeric readout. If you wish to add
one, add modules to convert the value to text and display the text. Along
with the privilege of building custom sub-controls comes the responsi-
bility of adding features.

What Are Sub-controls?
Looking at the prefab container’s Automation window (see figure 5.7),
you can see that the knob prefab controls one automatable parameter.
If you move the knob with the Automation window open you can see
the parameter changing in response to the knob, as was the case with
the slider.

Figure 5.7

The Patch Mem–Float module links the circuit in figure 5.5 to the
parameter. The other sub-controls would not affect the parameter if left
unconnected to Patch Mem–Float. You can assign the parameter a
MIDI controller for remote control in the Automation window. Opt for
Ignore PC = True and it will ignore program change messages. Select-
ing Private = True excludes it from the parameter set available for VST
automation.

The Wisdom of Using Sub-Controls

Controls built with sub-controls largely mirror the built-in functions of
standard SynthEdit controls, while offering far greater flexibility.
Rather than merely letting you re-skin a limited set of stock controls,
sub-controls enable you to create an unlimited number of control types.
Anything goes, from cosmetic variations on familiar types to new
designs offering functionality unattainable with standard controls.

Sub-controls offer even greater benefits:

Easy Animation: Sub-controls that provide GUI features boast built-in
animation capability. This lets you create dynamic GUIs that interact
with the user. Closely aligned with two-way data flow between sub-con-
trol modules, animation will be discussed in that context later in the
chapter.

Potential CPU Savings: Sometimes you can use sub-controls to per-
form conversions and similar calculations on the GUI side in response
to user interactions, thereby moving time-consuming computations
out of the audio processing stream. The next section discusses the rela-
tionship and interaction between the GUI and audio processing.
197

Chapter 5 All About Sub-controls

198
More on What Sub-Controls Do and How They Do It

GUI Controls, Audio Processing, and Parameters

You’ll find sub-controls’ purpose and performance easier to grasp if you
know a bit about how they fit into the overall structure of a plug-in.
This section briefs you on the basics without delving deeply into techni-
cal details.

In a VST plug-in, the GUI and audio processing run in separate
threads, and are relatively independent of one another. This minimizes
CPU contention that could cause audio glitches. Of course, audio pro-
cessing takes place in real time, so audio data must be processed con-
stantly at the sampling rate (44,100, 48,000, or 96,000 times per sec-
ond). These time constraints don’t apply to the GUI. It operates more
or less on its own schedule, driven by events such as mouse moves and
clicks. Keeping the GUI and audio processing separate prevents prob-
lems. For instance, if repainting a screen were allowed to delay an
audio signal, dropouts, clicks, or pops might occur.

A VST plug-in’s GUI and audio sides communicate with each other
indirectly via the VST host by shuttling parameters to and fro (see fig-
ure 5.8).

Figure 5.8: Host and plug-in

Each GUI control affecting audio processing must communicate
changes in its value to the VST host by updating its assigned parame-
ter. The host then passes the changed parameter value along to the
plug-in’s audio processing. When audio processing changes a parame-
ter, the host sends the new parameter value to the GUI. For an auto-
mated parameter, the host changes the parameter and passes the
changes to both the audio processing and the GUI of the plug-in. Most

More on What Sub-Controls Do and How They Do It
VST hosts provide a default interface that allows the end user to edit a
plug-in’s parameters directly, without using the plug-in’s custom GUI.
In fact, some VST plug-ins lack a custom GUI, relying on the host’s
default interface instead. A plug-in’s custom GUI is really just a fancy
graphical editor for the plug-in’s parameters.

This division of GUI and audio processing holds true even within a sin-
gle module for those modules containing both GUI processing and a
direct connection to audio processing. SynthEdit’s native controls han-
dle this internally. Recall how the standard slider module’s parameter
changes when the slider’s grip moves. If a plug on an audio processing
module connects to the slider’s Signal Out plug, it also links to the
slider’s parameter on the audio processing side. When the slider’s GUI
side sends the parameter change to the host, the slider’s audio process-
ing side receives the parameter change from the host and sends it out
on the Signal Out plug to the connected audio processing module.

If you’re dealing with sub-controls, you must provide a way to connect
the GUI features to a parameter. In the case of our example knob, this
is the Patch Mem–Float module affording access to the parameter con-
trolled by the knob. Remember, the only way a sub-control can affect
(or be affected by) audio processing is to pass parameters through the
host.

Of all the SynthEdit sub-controls, only those with Patch Mem in their
names afford you access to parameters. Third-party sub-control mod-
ules, on the other hand, may or may not access parameters directly. The
best way to learn which parameters are in use is to view the Automa-
tion window of the container holding the sub-controls. Some third-
party modules may use their own parameters for internal purposes. It
is usually best to set both Ignore PC and Private to True for parameters
that do not correspond to your synth or effect’s actual sound parame-
ters (see figure 5.9).

Figure 5.9
199

Chapter 5 All About Sub-controls

200
GUI Plugs and Data Types

Figure 5.10

One of the first things you may have noticed about sub-controls is that
some or all of the plugs appear on blue backgrounds (see figure 5.10)
rather than the gray backgrounds commonly found on other SynthEdit
modules. The reason for this difference stems directly from the separa-
tion of GUI and audio. The blue-background plugs serve to make con-
nections on the GUI side of the plug-in, and will not connect directly to
the audio processing plugs with the gray backgrounds. We refer to
plugs with blue backgrounds as GUI plugs. Five data types are defined:

Be sure to use Patch Mem or other conversion sub-controls to transfer
GUI plug values to and from the corresponding gray-background plugs
(see figure 5.11).

Figure 5.11

Float (blue) for any kind of numeric value

Int (yellow) for integers only

Bool (black) for logical values that can be either True or False

Text (dark red) for freeform character data

List (green) for enumerated data

More on What Sub-Controls Do and How They Do It
It Goes Both Ways—Data Flow and Animation

In contrast to audio connections, where signals flow in one direction,
GUI connections are bidirectional. Changes in values move left to right
and right to left. In the structure view, the wires that connect GUI plugs
have arrow heads at both ends to show this two-way flow (see figure
5.12).

Figure 5.12

The bidirectional nature of these connections may seem confusing
after working with the left-to-right flow of other SynthEdit connections.
Unfortunately, when you try to make an invalid connection, SynthEdit’s
error messages don’t help: They refer to plugs on a module’s left as
inputs, and plugs on a module’s right as outputs, although a GUI plug
can be both.

Most sub-controls that accept graphic or text input also provide graphic
or text output. For instance, changing the position of the knob in the
Bitmap Image in figure 5.12 changes the value at the Animation Posi-
tion plug. Conversely, changing the value at the Animation Position
plug also changes the knob’s position. The knob and its shiny cap in
figure 5.12 move in tandem because the motion of one Bitmap Image
changes the value of the Animation Position. This change goes to the
other Bitmap Image, prompting it to move so it reflects the new posi-
201

Chapter 5 All About Sub-controls

202
tion. This goes in either direction, so grabbing the knob’s outer rim or
the shiny cap with the mouse achieves the same effect. The two-way
nature of sub-controls makes it very easy to include animation and
interactive feedback in your GUI design.

Though GUI plugs on both sides can serve as both inputs and outputs,
those at the module’s right are not quite identical to those on the left.
The latter act as masters, those on the right as slaves. You may connect
more than one slave to a master, but only one master to a slave. This
means you could not connect a second Patch Mem–Float to the knob
Bitmap Image Animation Position plug in figure 5.12. Later you will
learn how to solve this problem using splitters.

A Look at Native SynthEdit Sub-controls

This section briefly describes the sub-control modules that come with
SynthEdit version 1.0.x. To whip this chapter into shape, we grouped
sub-controls by function in six categories:

❖ Data Manipulation

❖ Data Type Conversion

❖ GUI Input/Output

❖ Parameter Interface

❖ Routing

❖ Miscellaneous

A Look at Native SynthEdit Sub-controls
Data Manipulation Modules

These modules change the value of a GUI variable. They may or may
not also convert the value from one GUI data type to another.

Bools to List and List to Bools

Figure 5.13

Use these modules together to change the composition of a list. Con-
necting the Value plug of the Bools to List to a green GUI list plug cre-
ates a Bool type plug on the left for each item in the list (see figure
5.13). Connecting the Spare plugs of the List to Bools to selected plugs
on the Bools to List creates a new list itemizing only items selected at
the List to Bools’ List plug (see figure 5.14).

Figure 5.14

dB to Animation

Figure 5.15
203

Chapter 5 All About Sub-controls

204
The dB to Animation module converts a decibel level in the range of
−20 to +3 dB to an animation position in the range 0.0 to 1.0. It uses a
non-linear scaling formula whose slope increases along with the input
value. This permits the scale of VU meters and the like to be stretched
to show more detail at the upper end of the scale. Out-of-range values
are clipped to 0.0 and 1.0. The module works in one direction only,
from dB to animation position. SynthEdit’s VU meter prefab (Insert
menu: Controls) is a good example application of this module (see fig-
ure 5.16).

Figure 5.16

Float Scaler

Figure 5.17

The Float Scaler calculates a linear function of its input. Use it to scale
a number and/or add an offset. It multiplies the Value In by a specified
amount, and then adds a specified amount:

x is the Value In, m is the input to the Multiply by plug, and b is the
input to the add plug. Figure 5.18 illustrates the example 5.0 ∗ 0.50 +
1.0 = 2.50 + 1.0 = 3.50.

Value Out = y = mx + b

A Look at Native SynthEdit Sub-controls
Figure 5.18

The Float Scaler is bidirectional; that is, when the Value Out changes it
also calculates the inverse function,

The module does not recalculate anything when the inputs to the Multi-
ply by or Add plugs change.

Image to Frame

Figure 5.19

Given a frame count, this module converts an animation position to the
corresponding frame number. Typically, it connects to a Bitmap Image
as shown in figure 5.20. The animation position ranges from 0.0 to 1.0,
while the frame number ranges from 0 to 1 less than the frame count.

Value In = x = (y − b)/m
205

Chapter 5 All About Sub-controls

206
Figure 5.20

Increment2

Figure 5.21

The Increment2 module steps through the items of a list, selecting the
next item when incremented, or the previous item when decremented.
Increment and Decrement plugs respond when their inputs change
from True to False, so that a momentary contact button increments or
decrements the selection when the mouse button releases.

When the Wrap input is set to True, the selection wraps back around to
the beginning of the list when incremented at the end of the list, or to
the end when decremented at the beginning. SynthEdit’s List Entry2
prefab (Insert menu: Controls) is a good example of this sub-control in
a practical application (see figure 5.22).

A Look at Native SynthEdit Sub-controls
Figure 5.22

Spring

Figure 5.23

This module typically prompts an animated graphic to jump back to a
default position when the mouse button releases. It sets the value of its
Normalized Value plug to the value of its Reset Value input when the
Mouse Down plug’s value changes from True to False. The reset value
normally lies in the animation position range of 0.0 to 1.0.

In the Pitch Bender prefab (Insert menu: Controls), the reset value is
0.5, which prompts the pitch bend wheel to return to the center posi-
tion (see figure 5.24).
207

Chapter 5 All About Sub-controls

208
Figure 5.24

Data Type Conversion Modules

These modules convert from one data type to another, without affecting
the value.

Float to Bool

Figure 5.25

This module converts a Float value to a Bool True or False:

If In > 0.0, Out = True
If In ≤ 0.0, Out = False

The module works in both directions:

If Out = True, In = 10.0
If Out = False, In = 0.0

A Look at Native SynthEdit Sub-controls
Int To List2

Figure 5.26

The Int to List2 module converts an integer input into a selection in the
list connected to its Out plug. It’s bidirectional, so it also converts a list
selection into an integer. Its two modes of operation are Index and
Value.

In Index mode, lists items are indexed starting at 0. Setting the In
plug’s value to a list item’s index selects the item. Conversely, selecting
a list item sets the In plug to the item’s index. Say the list entries are
saw, pulse, triangle, and sine. Then setting the In plug to one selects
pulse, and selecting sine sets the In plug to three.

Value mode works like Index mode for simple lists, but not if you’re
dealing with a list whose items’ internal values differ from their ordinal
positions. Say the assigned values are

saw = 1, pulse = 2, triangle = 3, sine = 5

In this case, a list item is selected if its assigned value equals the value
of the In plug. Conversely, the In plug is set to the assigned value of the
selected list item. Setting the In plug to 1 selects saw, while selecting
sine sets the In plug to 5. Setting the In plug to an unassigned value—
say, in this case, 4—does not select any list item.

Text To Float

Figure 5.27

This module converts Float values to text strings and vice versa. You
decide if you want the plug to determine the number of decimal places
displayed in the text string automatically, or define a fixed number in
the range of 0 to 10.
209

Chapter 5 All About Sub-controls

210
GUI Input/Output Modules

This category comprises modules providing GUI features for users to
tweak.

Bitmap Image

Figure 5.28

The Bitmap Image sub-control displays the bmp or png image named
by its Filename plug. Employ it for static images or animated controls.

If you use the module with a multiple-frame image, the Animation
Position plug sends the currently displayed frame’s position on a nor-
malized scale of 0.0 to 1.0. This goes both ways, so changing the Ani-
mation Position plug’s value prompts the displayed graphic frame to
change.

Pressing the left mouse button while the cursor hovers over the image
sets the module’s Mouse Down plug to True.

The Frame Count plug outputs the number of frames in the image
when an image file is first loaded, and when the window displaying the
image first opens. Otherwise, it may not always be accurate.

If you want to use the module to animate multiple-frame images, spec-
ify the frame size, type of mouse response, and padding, if any, in a txt
file bearing the same name as the graphic file (with txt in place of the
bmp or png extension). The txt file format is the same as that used for
default SynthEdit skin components.

Earlier in the chapter, Bitmap Image sub-controls in the Knob Sm pre-
fab served to control a numeric control voltage output. The next exam-
ple demonstrates how a Bitmap Image controls list selections.

A Look at Native SynthEdit Sub-controls
Figure 5.29

Figure 5.29 shows a seven-frame image made from screenshots of the
standard SynthEdit oscillator’s seven waveforms. Its associated txt file
contains the following:

type animated
mouse_response horizontal
frame_size 97, 97

With mouse response set to horizontal, dragging the image sideways
changes the frame, and therefore the selected list item.
211

Chapter 5 All About Sub-controls

212
In figure 5.30, you can see how the Bitmap Image’s Animation Position
is converted to an integer frame number. The Int to List uses that inte-
ger value to select the corresponding list item. As usual, a Patch Mem
module provides the parameter interface between the GUI modules
and the audio side.

Figure 5.30

Dropdown List

Figure 5.31

The Dropdown List module displays the items of a list connected to its
List plug, and allows the user to select an item. Select it in the panel
view, and you can resize the module’s GUI by dragging the square siz-
ing handles (see figure 5.32). Normally, it looks like a text box with the
selected item displayed (see figure 5.33). When the user clicks it (with
the panel locked), the list drops down, enabling selection (see figure
5.34).

Figures 5.32, 5.33, and 5.34

A Look at Native SynthEdit Sub-controls
Your skin folder’s global.txt file contains seven categories offering a
selection of font styles for the sub-control—Normal, Heading 1, Head-
ing 2, Heading 3, User 1, User 2, and User 3. Specify the font face, size,
color, and background color (including transparent) using the same
conventions that define the standard SynthEdit controls’ fonts in the
global.txt file, for example:

FONT_CATEGORY "Normal"
font-family "MS Sans Serif"
font-size 12
font-color #000000
background-color #ffffff
text-align center

The Text Entry2 sub-control also accepts these seven font categories.

Joystick Image

Figure 5.35

The Joystick Image module animates in two dimensions a single-frame
bmp or png image named by its Filename plug. It also animates an
image in one dimension, either vertically or horizontally. Select it in the
panel view, and you can resize the module’s GUI by dragging the
square sizing handles (see figure 5.36). To confine the motion to one
dimension, stretch the rectangle in one direction only (see figure 5.37).
To enable free movement from side to side and up and down, extend
the rectangle in both directions (see figure 5.38).

Figures 5.36, 5.37, and 5.38
213

Chapter 5 All About Sub-controls

214
The Position X and Position Y plugs employ a normalized scale of 0.0
to 1.0 to issue the image’s horizontal and vertical position. 0.0 repre-
sents the sub-control area’s left and bottom edges; 1.0 the sub-control’s
right and top edges. Interaction is bidirectional, so manipulating the
Position X and Position Y plugs’ values animates the image’s position.

Pressing the left mouse button while the cursor hovers over the image
sets the Mouse Down plug to True.

In a typical application, a Joystick Image sub-control combines with
one or more Bitmap Image sub-controls to provide a static background
(see figures 5.39 and 5.40).

Figures 5.39 and 5.40

Text Entry2

Figure 5.41

The Text Entry2 module accepts input and displays output text. Select it
in the panel view, and you can resize the sub-control’s GUI by dragging
the square sizing handles (see figure 5.42).

A Look at Native SynthEdit Sub-controls
Figure 5.42

Text Entry2 lets you to select from the same seven font categories avail-
able for the Dropdown List—Normal, Heading 1, Heading 2, Heading
3, User 1, User 2, and User 3. Again, specify font face, size, color, and
background color (including transparent) in the global.txt file using the
same conventions that define standard SynthEdit controls’ fonts.

The module offers two mode settings, Normal and Read-Only.

If you type text into the sub-control’s text box and press the Enter key or
click the mouse outside the text box, the Text plug issues this text when
the Multiline plug setting is False. If its setting is True, the Enter key
advances the insert point to the beginning of the next line. Clicking the
mouse outside the text box still prompts the Text plug to put this text
out.

The module does not retain typed-in text if the Text plug is uncon-
nected.

Tinted Bitmap Image

Figure 5.43

Essentially a Bitmap Image module, it colors the image using added
plugs for Hue, Saturation, and Brightness—each on a scale of 0.0 to
1.0. In contrast to a regular Bitmap Image module, this one lacks a
Frame Count plug.
215

Chapter 5 All About Sub-controls

216
Parameter Interface Modules

These Patch Mem modules link the other sub-control modules to the
parameters they control. Patch memory stores the parameter values for
recall when changing patches or loading a song. Again, you can deter-
mine if the parameter changes with patch changes by setting Ignore
PC to True or False in the parent container’s Automation window.

Patch Mem–Float
Patch Mem–Float Out
Patch Mem–Float Out B
Patch Mem–List 2
Patch Mem–List B
Patch Mem–Text

Figure 5.44

We discussed these modules’ role in some detail in the sections “GUI
Controls, Audio Processing, and Parameters” on page 198. They differ
primarily in the type of data (and thus the type of parameter) they han-
dle—Float, List, or Text.

What’s more, Patch Mem–Float comes in three variants, with key plugs
on the right or left-hand sides to give you more convenient connection
options. The gray-background audio processing plugs handle Float data
rather than voltages. Voltage must be converted separately because—
unlike GUI data—it is processed at audio rates. Float to Volts (figure
5.45) and Volts to Float (figure 5.46) modules (Insert menu: Conver-
sion) do the converting. Float to Volts lets you specify the amount of
smoothing applied as changes in Float data are interpolated to voltage
changes at the sampling rate. Volts to Float lets you specify the rate at
which Float data is updated as voltage changes.

A Look at Native SynthEdit Sub-controls
Figures 5.45 and 5.46

It also provides a selection of useful response curves/conversions
enabling outgoing Float data to be used to report the input signal in
terms of:

❖ dB VU

❖ dB PPM

❖ dB Peak

❖ dB HeadRoom

❖ Volts DC (Fast)

❖ Volts DC (Average)

❖ Volts RMS

The Patch Mem–List sub-control comes in two guises. Patch Mem–
List2 interfaces with modules that use SynthEdit’s original List Entry
data type (a green plug on a gray background). Patch Mem–Text fea-
tures a Bool type File Dialog plug that opens a standard Windows File
Open dialog when its value changes from True to False (mouse up on a
momentary contact switch). Then the file selected from the dialog pro-
vides the Value Plug’s input.

All Patch Mem modules have a Name plug. This serves several pur-
poses: It gives you a handy place to connect a Text Entry2 you can use to
label the control on your GUI. What’s more, this label is imposed on
the parameter. This name appears at the left of the parameter’s value in
the Automation window. And the same name appears in the host’s VST
parameters list when the user opens the host’s default interface to your
plug-in’s parameters, or uses them for VST automation.
217

Chapter 5 All About Sub-controls

218
Routing Modules

Routing modules help you sidestep some of the constraints on connect-
ing GUI modules. Granted, only one of SynthEdit’s native sub-controls
falls into this group. However, you can hardly do without several third-
party modules in the group if you wish to achieve serviceable results
with SynthEdit sub-controls. Jeff McClintock notes that future Synth-
Edit versions will resolve this issue.

Bool Splitter

Figure 5.47

So, what do you do if you wish to route the same Bool type value to sev-
eral destinations? Easy enough, if the value feeds a left-side plug: Sim-
ply connect it to as many locations as you need (see figure 5.48).

If the value you wish to distribute feeds a right-side plug, you have a
problem. The right-side plug is a slave that can have but one master,
which means you have just the one connection option. This is where
splitters come in. The Bool Splitter duplicates as many right-side plugs
as you need, and passes the value of its left-side plug to all (see figure
5.49).

Figures 5.48 and 5.49

Although this problem with right-side plugs affects other GUI data
types, SynthEdit provides a splitter for the Bool type only. Third-party
module packs provide splitters for Float, Text, and Int.

A Look at Native SynthEdit Sub-controls
Miscellaneous Modules

This group contains sundry modules that don’t quite fit into other cate-
gories. Only one native SynthEdit sub-control falls into this group.

System Command2

Figure 5.50

The System Command2 module lets you call any of the following Win-
dows commands from within your plug-in, using the Filename as the
argument to the command:

❖ Edit

❖ Explore

❖ Find

❖ Open

❖ Print

❖ Properties

A command works only if defined as a valid Windows command for the
specified argument. This depends on Windows Registry settings,
which may vary from one user’s machine to another’s. Filename need
not always be a file. For example, Open can be used with a URL to open
a Web browser on the specified Web page. The Explore command
expects the argument to be a directory path.

Changing the Trigger plug’s Bool value from True to False issues this
command.
219

Chapter 5 All About Sub-controls

220
Putting Your Sub-control Skills into Practice

Now comes the fun part. This section shows you how to do useful
things with native SynthEdit sub-controls. Fair enough if you jumped
right to it, for learning by doing is a fine way to go. The first few exam-
ples recap a few key topics discussed earlier. If you skipped the chap-
ter’s earlier sections, you are well-advised to at least thumb through
them. You don’t have to read all the copy; simply skim the many inter-
spersed examples, and you may discover some to be helpful.

Making Simple Connections

The first two examples merely demonstrate how to replace native
SynthEdit controls with sub-controls serving much the same purposes.

As figure 5.51 illustrates, you may use a Patch Mem–List 2 to connect a
sub-control such as a Dropdown List to a List Entry type connection.
Text Entry2 connects to the Patch Mem–List2’s Name plug; it names
the parameter and labels the control.

Figure 5.51

With a Patch Mem–Text module, you can use a Text Entry2 sub-control
in place of the native Text Entry control, as in figure 5.52.

Putting Your Sub-control Skills into Practice
Figure 5.52

This example’s Value text is a DH_MIDIMunger rule. You don’t want it
to appear on the GUI, so hide the Text Entry2 module inside another
container, with its Controls on Parent set to Off. In this case, set Private
in the container’s Automation window to True, as the
DH_MIDIMunger rule is unsuitable for VST automation. If you are
using different rules for different patches, leave Ignore PC set to False;
otherwise you must set it to True so it is available to all patches.

Of course, native controls would work fine for both these examples.
Using sub-controls as simple replacements for existing controls has its
pros and cons. On the upside, Text Entry2 offers a multi-line entry
option unavailable from native Text Entry control. Also, as described in
the section “A Look at Native SynthEdit Sub-controls” from page 202
onwards above, both the Dropdown List and Text Entry2 let you select
from seven user-defined font styles you can specify in the global.txt file
in your skin folder. What’s more, sub-controls handle output and
deliver input, which lets you change the text or selection dynamically.
Native controls can’t do this, but they do have other advantages: A
Native List Entry control easily morphs from a combo box into an LED
stack, a selector, a button stack, a rotary switch, or an up/down selector.
All you have to do is choose one of these visuals on its right-click Prop-
erties window. Although you can build all these controls using sub-con-
trols, a native List Entry control type that meets your needs requires a
lot less elbow grease.
221

Chapter 5 All About Sub-controls

222
Bitmaps as Controls

The Bitmap Image sub-control lets you use multiple-frame bmp or png
images as controls. You’ve seen this application several times in this
chapter, so this example merely rehashes the basics. Figure 5.53 shows
the Bitmap Image module’s right-click Properties.

Here, we’ve selected the moog_knob.png file from the SynthEdit
default skin folder in the Bitmap Image sub-control’s right-click Prop-
erties.

Figure 5.53

This image has 40 frames, so its animation runs very smoothly. Its
associated moog_knob.txt file looks like this:

type animated
frame_size 48, 45
mouse_response rotary
padding 13, 7, 13, 4

In the structure in figure 5.54, a Patch Mem–Float and a Float to Volts
converter convert the image’s Animation Position to voltage.

Putting Your Sub-control Skills into Practice
Figure 5.54

Text Entry2 provides a name for the parameter and a label for the GUI.

Patch Mem–Float’s Min Value and Max Value demarcate the output
voltage range.

You may use any multiple-frame bmp or png image in this way. And
that speaks volumes about sub-controls’ power and flexibility.

Simple Panel Selection

Figure 5.55

You can use sub-controls to provide selectable panels, making it much
easier to manage screen space in your GUI design. Containers have a
Bool type plug called Controls on Parent (see figure 5.55). When this
plug’s setting is True, any controls visible in the container appear in the
panel view of the container’s parent container.

To make selectable panels, build each panel inside a container, lay out
each container’s panel view as it you want it to appear when selected,
and control the process of showing and hiding panels by setting only
one of their Controls on Parent plugs to True at a time.
223

Chapter 5 All About Sub-controls

224
Figure 5.56

A List to Bools module is the perfect choice for this.

It automatically replicates as many Bool plugs as you need, and creates
a list offering each container’s Controls on Parent plug for selection.

Feel free to change the names of list items in the List to Bools’ Proper-
ties. Selecting a list item sets the corresponding Bool value to True, and
all others to False. This shows the selected container’s panel on the par-
ent panel. Of course, a Dropdown List is not your only option for select-
ing the panel. You could add Increment2 modules to step through pan-
els, or use a Bools to List to connect individual switches, as in figure
5.57.

Figure 5.57

Putting Your Sub-control Skills into Practice
Limiting and Ordering List Selection

Sub-controls greatly simplify the tasks of limiting list selection and
changing list items’ order. When you hook up a Bools to List module to
a GUI list type connection linked to a list type input, it automatically
sprouts a left-side Bool connection for each item in the list. Connect the
items you want in the desired order to a List to Bools as shown in figure
5.58.

Figure 5.58

Adding a File Open Button

With sub-controls, you can use custom graphics to provide a File Open
dialog. Figure 5.59 shows a two-frame button image used in the Bitmap
Image module. Here’s its txt file:

; Load button
type animated
mouse_response click
frame_size 67,30

Pressing the button sets the Bitmap Image’s Animation Position to 1.0;
releasing it to 0.0. Float to Bool issues a True for the former, and a False
for the latter. The False-True sequence triggers the File Dialog plug on
the Patch Mem–Text, which opens a Windows File Open dialog. The
selected file name then passes to the Wave Player.

Figure 5.59
225

Chapter 5 All About Sub-controls

226
Linking to a Website

The System Command2 sub-control performs various functions. Like
the file dialog above, a custom graphic can trigger it (see figure 5.60).
To link to a website, select open as the Command, and enter the com-
plete URL as the Filename as shown in figure 5.61.

Note: Be sure to use the http:// prefix.

Figure 5.60

No http:// is a no go! Use http://www.synthedit.com

Figure 5.61

Exploring SynthEdit Prefab Controls

Building a custom control using sub-controls is in some ways akin to
building a miniature SynthEdit project. You design the functionality in
the structure view, and the appearance in the panel view. The prefab
controls in SynthEdit’s Insert Controls menu offer some choice exam-
ples of how all the parts fit together, some of which will be familiar
from previous sections. In this section, we’ll look at a few more, and
examine some prefabs we developed for this chapter to illustrate more
techniques for you to apply to your custom control designs.

Putting Your Sub-control Skills into Practice
Let’s start with the SE Switch control. Figure 5.62 depicts how it looks
in a panel view. Figure 5.63 shows its simple structure, which should
be looking fairly familiar to you by now.

Figures 5.62 and 5.63

The Animation Position is 0.0 or 1.0, depending on the switch’s posi-
tion. This value gets scaled up to the Patch Mem–Float’s Min—Max
Value range of 0.0 or 10.0. First stored as a Float type parameter, this
range is then converted to output voltage. Text Entry2 provides the
parameter’s name and the control’s label.

Figure 5.64

Figure 5.64 shows the two-frame image used for the Bitmap Image
sub-control. Its text file contains:

type animated
orientation vert
frame_size 25, 26
padding 5, 2, 5, 3
mouse_response stepped

Note that the switch’s panel view in figure 5.65 was unlocked to change
Text Entry2’s position and text.
227

Chapter 5 All About Sub-controls

228
Figure 5.65

Next up is the SE LED2 control. A sub-control-based prefab, it’s more
flexible than the native LED Indicator control in that its Hue, Satura-
tion, and Brightness plugs let you adjust any color dynamically (see fig-
ure 5.66). Figure 5.70 shows its structure. Note that an animated Bit-
map Image provides the lens, while a Tinted Bitmap Image supplies
the color. Voltages greater than 5 at the Signal In plug prompt the Bit-
map image to display the lens image’s second frame. It is more trans-
parent than the first, allowing more of the color from the Tinted Bit-
map Image to shine through when the LED is on. For this to work, you
must position the Tinted Bitmap Image behind the Bitmap Image in
the z-order by using the To Back command on the module’s right-click
context menu.

Figure 5.66

The Tinted Bitmap Image uses a single-frame bmp image file (figure
5.67); the Bitmap Image uses a two-frame bmp image with a mask (fig-
ures 5.68 and 5.69).

Putting Your Sub-control Skills into Practice
Figures 5.67, 5.68, 5.69, and 5.70

LED2 works simply enough: Volts to Float and Patch Mem convert each
voltage input to a Float value. DC Volts (Fast) is selected for the Volt to
Float Responses, with Update Rates set to 20 Hz. Selected Patch Mems’
types hinge on whether the left or right side requires Float output. The
value originating in the Signal In plug drives the lens Bitmap Image’s
Animation Position. The Tinted Bitmap Image’s Hue, Saturation, and
Brightness inputs require values ranging from 0.0 to 1.0, so Float Scal-
ers multiply the voltage values by 0.1 to scale them down from Synth-
Edit’s 0-to-10 volt range.
229

Chapter 5 All About Sub-controls

230
Adding Animation

For our next example, we’ll start with another prefab from the SE
Insert:Controls menu, and then add our own twist to it. Figure 5.71
shows the structure of the Joystick prefab.

Figure 5.71

Nothing new or revolutionary here: A Joystick Image module reports
both of a knob image’s X and Y positions, making it perfect for the joy-
stick knob. A static Bitmap Image provides the rest of the joystick.
Scaled from 1.0 to 0.0, the X and Y positions provide the Animation
Position inputs for the two Patch Mem–Floats. The Patch Mems’ Min
Value and Max Value are −5 and +5, respectively. They scale Animation
Positions to float values within this range, convert to voltages, and feed
the signal to the X and Y plugs. When the user releases the left mouse
button after clicking or dragging the joystick knob, the Mouse Down
value changes from True to False, prompting both Springs to set the
Animation Positions to the Normalized Value of 0.5, thereby centering
the joystick knob.

Putting Your Sub-control Skills into Practice
Figure 5.72

Now let’s take the Joystick prefab and modify it to create an animated
version of the DH_JoystickIn module (Figure 5.72). This lets users
employ an external joystick or game pad as an input source for Synth-
Edit.

The DH_JoystickIn’s X-axis and Y-axis outputs range from −5 to +5
volts, which coincides with the Patch Mem–Floats’ Min Value to Max
Value range.

Using the X-axis output to vary the input to the Value plug on the “X”
Patch Mem–Float changes the Animation Position, and moves the
knob sideways. If you want up and down movement, have the
DH_JoystickIn’s Y-axis output vary the input to the Value plug of the
“Y” Patch Mem–float. Figure 5.73 shows you how to do this.
231

Chapter 5 All About Sub-controls

232
Figure 5.73

Splitting a List

Figure 5.74

Time to build a custom selector button of your very own. This exercise
illustrates lots of important techniques, one being how to split a list
without having a list splitter module at your fingertips. Our selector
will step through a list as it is clicked, returning to the top after arriving
at the last item. Its label will change with each click to show the
selected item. Figures 5.74 and 5.75 depict the prefab and its panel
view. We’ll keep it simple by settling for three selections—A, B, and C.

Figure 5.75

Putting Your Sub-control Skills into Practice
For a change of pace, we’ve used a transparent image with a Tinted Bit-
map Image for the button. The tint provides the main color, and the
background fills in the shading. Figure 5.76 shows the structure.

Figure 5.76

Clicking the button moves the Animation Position from 0.0 to 1.0;
releasing it resets it to 0.0. The resulting False-True-False output from
the Float to Bool converter is then split two ways, prompting each of the
Increment2 modules to select the next item in its list. Both Increment2
modules’ Wrap plugs are set to True, so the list returns to the first entry
after reaching its end.

Figure 5.77
233

Chapter 5 All About Sub-controls

234
The top list connects to the external List Out via a Patch Mem–List2.
Created by List to Bools, the bottom list determines which of the three
Containers at the lower right Controls on Parent is set to True so its
contents appear on the parent panel. The containers hold labels for the
list items; in this case, A, B, and C as shown in figure 5.77. Every item
in the external list requires a dedicated label container. Though some
third-party sub-controls take label information directly from the exter-
nal list, we’re focusing on learning to handle the sub-controls that ship
with SynthEdit. We’ll look at others later. The point here is that the
structure in figure 5.76 splits our list. Though lacking a list splitter
module, we had a Bool Splitter split the input, and fed it to two parallel
lists, thereby achieving much the same result.

Let’s take this a step further to create an LED Stack selector. We’ll make
it horizontal rather than vertical like the standard SynthEdit control
(see figure 5.78). The horizontal LED stack prefab’s and our selector
button’s structures are identical, except that we have split off a third list
to control the LEDs (see figure 5.79).

Figure 5.78

Extending the Sub-control Toolkit
Figure 5.79

Extending the Sub-control Toolkit

SynthEdit’s on-board sub-controls only scratch the surface of what sub-
controls can do. A varied cast of developers has created oodles of third-
party sub-controls. These modules give you mind-boggling options for
customizing the your SynthEdit creations’ GUIs.

This section surveys the range of third-party sub-controls available at
the time of writing. These include modules by this chapter’s author,
Dave Haupt (DH), as well as Rob Herder (RH), Butch Kratzer (BK),
Simonluca Laitempergher (SL), Oli Larkin (OL), and Kelly Lynch
(KDL). Rather than providing full documentation of every sub-control,
we aim to let you know what modules are out there, and the amazing
capabilities they put into your hands. To learn more about a given mod-
ule, see the help files provided with the modules and the developer’s
website (more on this on www.wizoobooks.com/synthedit).

Recall that for the purpose of discussion, we broke native SynthEdit
sub-controls down into six functional groups. You’ll come across the
same categories here, with added sub-categories to do the diversity of
third-party sub-controls justice. These finer classifications should make
it easier to find what you are seeking when you reference this chapter
later, as we hope you will. Again, the main categories are:
235

http://www.wizoobooks.com/synthedit

Chapter 5 All About Sub-controls

236
❖ Data Manipulation

❖ Data Type Conversion

❖ GUI Input/Output

❖ Parameter Interface

❖ Routing

❖ Miscellaneous

Data Manipulation Modules

These modules adjust the value of a GUI variable. They break down
into four sub-categories:

❖ Format Conversion

❖ Numeric and Logical Operations

❖ Float Array Processing

❖ Text/List Manipulation

Format Conversion
These modules convert values from one format or type of unit to
another. They are great for expressing GUI control values in terms of
familiar or user-friendly units, such as Hz or dB. Having the GUI
thread do the converting spares CPU power.

DH Color Format Converters

Figure 5.80

Some Input/Output sub-controls have plugs that adjust text and back-
ground colors dynamically. They accept an integer value representing a
composite of the color’s red, green, and blue (RGB). The modules pic-
tured in figure 5.80 convert several common color specifications to this
integer RGB format:

❖ The hexadecimal format for RGB values that you recognize from
HTML.

❖ Hue, Saturation, and Luminance, as used in many paint programs.

Extending the Sub-control Toolkit
❖ Values scaled from 0 to 255 for the red, green, and blue components
in text form.

DH_dBToVolts2, DH_FloatExpCurve, DH HzToVolts2,
DH_msToVolts2

Figure 5.81

SynthEdit parameters generally comprise control voltages ranging
from 0 to 10 on a linear scale. These modules let you calibrate GUI con-
trols in decibels, Hertz, and milliseconds, and convert between scaled
logarithmic or exponential responses in a range of 0 to 10. All conver-
sions go both ways. See the section “Routing Modules” on page 267 for
a technique that reverses the flow through DH_FloatExpCurve to elicit
a logarithmic response.

SL Non-linear Scalers

Figure 5.82

SL ExpScaler implements the formula:

and its inverse for conversions between linear and exponential scales
over the same input and output range. Enter the range’s minimum and
maximum values, and the base, multiply, and add parameters to the
module’s right-click Properties. SL_Floats2Hertz converts floats to
Hertz. It also lets you use reference points for the volt/octave scale
other than the 5 volts = 440 Hz option SynthEdit offers.

output = base((multiply ∗ input) + add)
237

Chapter 5 All About Sub-controls

238
Numeric and Logical Operations
This group performs basic arithmetic and other numeric or logical
operations on GUI values. Again, using modules to calculate control
values in the GUI thread saves CPU on the time-critical DSP side. Bear
in mind, though, that GUI processing and DSP are separate threads,
meaning GUI and audio events are not in sync. Don’t use numeric
operations sub-controls in an audio processing chain, or to control volt-
ages with critical timing requirements.

BK_ListToBools2

Figure 5.83

There’s more to some modules than their appearances would have you
think. Though this module’s plug names tell you it was designed for
algorithm selection, its basic function comes in handy in other situa-
tions. The input is a standard (non-GUI) list entry that lets you set the
four Boolean outputs’ logical states. The output matching the selected
list item is True; the others are False. If you want to control panel selec-
tion using one of the variants of SynthEdit’s List Entry control, this may
be just what the good doctor ordered.

DH_FloatIncrement

Figure 5.84

This module adds or subtracts one from a current float value. You can
set it up to wrap around when it reaches a specified range’s high and
low value.

Extending the Sub-control Toolkit
DH_FloatCeil, DH_FloatFloor, DH_FloatQuantizer

Figure 5.15

All three of these modules cleave the fraction off a floating point num-
ber, leaving an integer. DH_Float Ceil converts to the next higher inte-
ger, DH_FloatFloor converts to the next lower integer, and DH_Float-
Quantizer rounds to the nearest integer.

DH_FloatAbs

Figure 5.86

DH_FloatAbs renders the absolute value of its input. Positive values
remain positive; negative values become positive.

DH Arithmetic Modules

Figure 5.87

The modules in this group do simple arithmetic on float values. Those
in figure 5.87’s second row provide right-side input, a convenient
option for some circuits.
239

Chapter 5 All About Sub-controls

240
DH_FloatCompare, DH_IntCompare
These modules compare two float or integer values, and depending on
the result, set one of three Boolean outputs to True.

Figure 5.88

DH_FloatMin, DH_FloatMax
You can use DH_FloatMax and DH_FloatMin to find the maximum or
minimum of any number of float values. Connecting one input plug
automatically creates another.

Figure 5.89

DH_FloatToDigits

Figure 5.90

DH_FloatToDigits issues the individual digits of a whole number up to
six digits, either as float values as shown in figure 5.90, or as animation
positions. The latter lets you use a ten-frame graphic image comprising
the digits 0 to 9 in any font in Bitmap Image modules to build bespoke
dynamic readouts. For more on this, see the DH_Character-
BitmapDriver in the section “Text/List Manipulation” on page 247.

Extending the Sub-control Toolkit
DH_ModulusOp

Figure 5.91

The modulus operator divides an integer by a second integer called the
modulus, and returns the remainder. It often serves to generate repeat-
ing sequences, for instance:

DH_ModulusOp performs this operation on its two inputs.

KDL Animation Controls

Figure 5.92

These modules take values of any input range specified by entering
Min and Max values into right-click Properties fields, and normalize
the output to GUI float values ranging from 0.0 to 1.0 as required for
animation with Bitmap Image modules.

For example, if an LFO with a peak-to-peak voltage of −5 to +5 volts pro-
vides the Volts In input of a KDL AnimControl Volts module, set Min
to −5 and Max to 5. The Anim Position’s output is then 0.0 at a −5 input
value, and 1.0 at +5 input value.

0 mod 3 = 0 3 mod 3 = 0 6 mod 3 = 0

1 mod 3 = 1 4 mod 3 = 1 7 mod 3 = 1

2 mod 3 = 2 5 mod 3 = 2 8 mod 3 = 2
241

Chapter 5 All About Sub-controls

242
Figure 5.93

KDL Panel Switches
KDL Panel Switches afford users easy pushbutton control for paged
panels. When a Switch takes on a value other than 0, the corresponding
Bool type Panel output changes to True, and the other inputs and out-
puts change to 0 and False, respectively. The one exception is that mul-
tiple panels may be selected with the KDL PanelSwitch 8c mkV’s Multi-
On option enabled. You can daisy-chain 8c and 8c mkV versions to sup-
port additional panels.

OL Random Float

Figure 5.94

OL Random Float is useful for randomizing controls. Its two modes:

❖ Generate a random number between 0.0 and 1.0

❖ Randomly choose between a specified High and Low value

Extending the Sub-control Toolkit
RH_2D_3D_Distance

Figure 5.95

This module calculates the Pythagorean distance formula in two or
three dimensions, giving the distance from the origin (0,0) to a point
(X,Y) in 2D, or from the origin (0,0,0) to a point (X,Y,Z) in 3D.

RH_Bitcount Set

Figure 5.96

These 4-bit binary counters accept integers from 0 to 15, outputting
binary representations of the input value. Out1 is the msb; Out 4 is the
lsb.

RH_Float_Lcompare

Figure 5.97

This mod compares Float In with Float In2. If they are equal, it sets
Float Out to 5; otherwise Float Out is 0.
243

Chapter 5 All About Sub-controls

244
RH_Int-Simple_Logic

Figure 5.98

This mod compares Int X and Int Y plugs’ values based on the relation-
ship determined by the Mode plug, which may be:

A value of True sets Bool Out and Text Out to True, and Float Out and
Int Out to Value High. False sets Bool Out and Text Out to False, and
Float Out and Int Out to Value Low.

RH Logic_Gates

Figure 5.99

These modules implement the basic binary logic gate types for integer
(0 or 1) and Boolean (False or True) inputs. The gate types are:

AND, OR, NAND, NOR, XOR, and XNOR

X == Y, X != Y, X > Y, X < Y, X ≥ Y, or X ≤ Y

Extending the Sub-control Toolkit
A value of True for the gate output sets Bool Out and Text Out to True,
and Float Out and Int Out to High Value. False sets Bool Out and Text
Out to False, and Float Out and Int Out to Low Value.

RH_Rescale

Figure 5.100

RH_Rescale translates and rescales its Input from the input range pro-
vided by In_Low and In_High, to the output range provided by
Out_Low and Out_High, using a linear transformation.

SL FixedGui Series

Figure 5.101

Use these modules when you need the equivalent of SynthEdit’s Fixed
Values on the GUI side. Enter the desired constant to the Value right-
click Properties field, and it will go to both Out plugs.

SL Gui Limiters

Figure 5.102

Use these to clip GUI float or integer values to a specified range. Enter
Min and Max values to the right-click Properties fields.
245

Chapter 5 All About Sub-controls

246
Float Array Processing

This set of modules interfaces between multi-valued GUI Input/Out-
put sub-controls, such as DH_MultiStepInput (see the section “GUI
Input/Output Modules” on page 258), and other modules that work
with one floating point value at a time.

DH_ArraySequencer

Figure 5.103

DH_ArraySequencer responds to control voltage pulses by taking an
array of float values from a multiple-input GUI Input/Output sub-con-
trol and spitting them out one by one as control voltages in a repeating
sequence.

Though array values are updated on the GUI side in response to the
user’s mouse movements, the DSP side receives the input pulses, and
sequences the output. This means the sequence and audio event pro-
cessing may be synchronized.

DH_ArrayToFloats

Figure 5.104

DH_ArrayToFloats provides simultaneous access to all array values. Its
output plug automatically clones itself on demand.

Extending the Sub-control Toolkit
DH_FloatArray

Figure 5.105

DH_FloatArray provides indexed access to array values. Indexing array
values from 0 to 1 less than the number of values in the array, it sup-
ports both read and write access.

The module also loads arrays from and saves them to a text file.

If a value changes or a new array loads from a file, the Array In plug
issues the new values so the GUI Input/Output sub-control reflects the
new values.

Text/List Manipulation

This group’s sub-controls let you endow your GUI with sophisticated
dynamic lists and other text features. They also enable handy functions
like selecting or constructing file names on the fly.

DH_CharacterBitmapDriver

Figure 5.106

Say you wish to build customized dynamic text display controls. Now
say you want to use fonts that need not be installed on the end user’s
machine. This module gets the job done. The result can look like the
LED Display prefab in figure 5.107’s structure view, and in figure
5.108’s panel view.
247

Chapter 5 All About Sub-controls

248
Figures 5.107 and 5.108

To use the module, you must first create a multi-frame
graphic containing all the characters in the font you aim
to use, as in figure 5.109. The graphic’s text file is surpris-
ingly simple:

type animated
frame_size 14, 20
; extra space at: top, bottom, left, right
padding 0, 0, 0, 0

Add to the module a character list containing the same
characters in the same order as they appear in the
graphic. Check out figure 5.110; it shows the LED Display
container’s plumbing.

The display comprises a series of Bitmap Image modules,
one for each character in the display, all of which use the
character graphic file. Each Bitmap Image’s Animation
Position plug connects to a Spare plug on the
DH_CharacterBitmapDriver. The Spare plugs automati-
cally replicate on demand. Arrange the Bitmap Images
horizontally or vertically in the panel view to lay out the
display. The display then spells out any text fed into the
DH_CharacterBitmapDriver’s Input Text plug.

Figure 5.109

Extending the Sub-control Toolkit
Figure 5.110

DHFormat, DH_FloatFormat

Figure 5.111

DH_Format and DH_FloatFormat let you label numeric values with
text characters, or insert numeric characters into a text string. Text
feeds into the Format plug; numeric values into one or more Var plugs.

Embed special format specification characters in the text to mark the
places where you wish to insert numeric values. You can have as many
Var inputs as you have format specifications in the format string. The
Var plug replicates automatically on demand. The module assigns
numeric input values from the Var plugs top down to the format speci-
fications from left to right in the text.

A format specification starts with a “%” and ends with a letter f. In
between the two, specify the minimum field width for the number, and
the displayed number of decimal places.
249

Chapter 5 All About Sub-controls

250
For example, the format specification %3.2f displays the number
3.14159 as 3.14. If a Var input is 2300, a format string %6.0f Hz dis-
plays it as “ 2300 Hz”. The module’s documentation provides lots
more insight into formatting capabilities.

DH_LeftString, DH_RightString, DH_SubString

Figure 5.112

These modules extract a substring of a specified length from the left,
right, or a specified start position in a text string.

DH_StringCompare

Figure 5.113

DH_StringCompare compares two strings and depending on the
result, sets one of its Boolean outputs to True. Performed in alphabeti-
cal order, comparisons may or may not consider whether characters are
uppercase or lowercase.

Extending the Sub-control Toolkit
DH_StringLength, DH_StringSearch

Figure 5.114

DH_StringLength provides the length of a text string:
DH_StringSearch a specified search string’s position. Commencing at
any position in the string, searches move left to right or right to left.

DH_TextAppend

Figure 5.115

This module simply appends any number of text strings. The Text In
plug automatically clones itself on demand.
251

Chapter 5 All About Sub-controls

252
DH_TextArray, DH_TextList, DHTextList2

Figure 5.116

All three of these modules let you load, manipulate, and store lists of
text items using simple text files. DH_TextArray uses a zero-based
numeric index to access the list items. DH_TextList and DH_TextList2
afford list access at their Selection plugs, which connect to a Dropdown
List or other GUI Input/Output list selection sub-control. Use them
with lists of patch names, file names, modulation sources, or destina-
tions—anywhere you need a custom list.

DH_TextArray and DH_TextList enable dynamic list updating. You can
set up either module to write changes to a file read by several other
DH_TextArrays and DH_TextLists elsewhere in the circuit. More than
one module should not write to the same file.

DH_ListExtractor

Figure 5.117

DH_ListExtractor issues the index and text value of a list’s current
selection. It also provides the entire list as a text string, with list items
separated by commas.

Extending the Sub-control Toolkit
DH_ListGenerator

Figure 5.118

This module offers a simple method of creating a sequential numeric
list dynamically. You can specify minimum and maximum values and
the increment, as well as ascending or descending order. The output
and list ranges need not necessarily agree. If the high and low values
you set for the output and list differ, the module interpolates from one
range to the other.

DH_ListSearch

Figure 5.119

DH_ListSearch searches a list for a specified search string. It reports
the number of items containing the string, as well as their list indexes.
If more than one item contains the search string, the Find Next and
Find Prev plugs step forward and back to the nearest strings.
253

Chapter 5 All About Sub-controls

254
DH_ListStandardizer

Figure 5.120

Custom lists may include special formatting characters serving to con-
trol advanced features of DH_PopupMenu (see “GUI Input/Output
Modules” on page 258). DH_ListStandardizer removes formatting
information so these lists work with standard SynthEdit GUI Input/
Output list selection sub-controls such as the Dropdown List.

KDL GuiList2 … every data type

Figure 5.121

You can use KDL conversion modules that convert from GUI lists to
other data types to construct custom lists. Use a comma-separated list
to enter the list items and their values into the List Choices box in the
module’s right-click Properties, as shown in figure 5.122.

The format for each item is:

list item = value

Figure 5.122

Extending the Sub-control Toolkit
The list item is what you want displayed in the list; the value is what
you want the module to issue when the item is selected.

Each item’s value is True or False when converting to a Boolean value.
Say you’re dealing with a list of the first eight harmonics. True could
signify harmonics that are the same note; False the others:

Fund = True, 2nd = True, 3rd = False, 4th = True, 5th = False, 6th =
False, 7th = False, 8th = True

If you don’t specify an item’s value with an = sign when converting to
numeric values, the item automatically adopts a value one higher than
the preceding value, starting at 0.

KDL modules that convert GUI lists to text values accept any text string
to the right of the = sign. For example, a list’s items could be patch
names and their values the names of files containing the samples.

KDL GuiText2GuiText

Figure 5.123

This module provides easy-to-use text substitution capabilities. Enter a
list of conversions in the format quarter note = crotchet, eighth note =
quaver, and so forth, and it will convert from left to right, right to left, or
both ways if you wish.

OL Animation Position to List2

Figure 5.124

This module lets you use a Bitmap Image to cycle through a GUI list’s
options.
255

Chapter 5 All About Sub-controls

256
RH_Int2Text-MidiCC

Figure 5.125

Fed the MIDI CC number, these modules issue a text string showing
the standard assignment for the CC number, or just the number if the
CC number is unassigned.

RH_Int2Text-ascii

Figure 5.126

Integers go in, text characters come out. Here’s the code:

Uppercase: 0 = A to 25 = Z
Lowercase: 32 = a to 57 = z

Note: This module does not convert from standard ASCII codes to
ASCII characters. To do this, first subtract 65 from the ASCII code, and
then feed the result into the module.

Data Type Conversion Modules

These modules’ mission is converting one data type to another, while
retaining the same or an equivalent value. Rather than listing them all,
suffice it to say that there are sub-controls for converting to and from
every GUI data type, and most DSP data types. Kelly Lynch developed a
comprehensive set, some of which appear in figure 5.127. If data type
conversion is possible, rest assured some KDL module is around to do
it.

Some KDL conversion modules do much more than merely convert
data types. We discussed these in other categories, emphasizing their
added capabilities.

Extending the Sub-control Toolkit
Figure 5.127

KDL modules offer many conversion options, for example:

❖ All GUI-to-GUI converters offer a choice of direction, converting
from left to right, right to left, in both directions, and with or with-
out changes feeding back to the originating plug. This is good
because it lets you compensate for the quirks of data flow among
GUI plugs.

❖ Conversion sub-controls with voltage inputs let you specify the sam-
pling rate and method.

❖ Converters with text inputs let you define word lists for conversion
to specific output values.

❖ GUI List outputs may be selected either by value or index.

Dave Haupt also developed a few data type conversion modules. These
sub-controls are simple, no-frills modules that work from left to right
and right to left. Oli Larkin’s straightforward OL List2SingleBool and
OL SingleBool2List modules convert an On/Off list to a True/False
Boolean value, with the option of inverting the relationship.
257

Chapter 5 All About Sub-controls

258
GUI Input/Output Modules

These sub-controls appear on your GUI for the user to employ when
handling your VST/VSTi plug-ins.

Note that their function is confined to feeding in and sending out GUI
data. You must combine them with other sub-controls to create full-
fledged controls. To this end, you will need a Patch Mem module for
each value you wish to store and recall as a parameter.

GUI Input/Output sub-controls come in three basic types:

❖ List Selection

❖ Numeric I/O

❖ Text I/O

List Selection
DH_DropdownList

Figure 5.128

An alternative to SynthEdit’s Dropdown List sub-control, this module
provides a resizable window, and the dynamic color and font selection
choices common to DH GUI I/O sub-controls. Figure 5.129 shows an
example panel view.

Figure 5.129

Extending the Sub-control Toolkit
DH_HSpinCtrl, DH_VSpinCtrl Horizontal and vertical spin controls
serve to step through a list or a specified sequence of numbers in either
direction, with optional wrap-around at the end of the list or sequence.
Selection plugs issue the currently selected item’s text, which Text
Entry2 or DH_TextDisplay can display, as shown in figure 5.131.

Figures 5.130 and 5.131

DH_ListBox DH_ListBox offers another GUI list selection option. It
features a resizable window, dynamic color and font selection, and
automatic vertical scrolling if the list is too long for display in the win-
dow.

Figure 5.132
259

Chapter 5 All About Sub-controls

260
DH_PopupListBox DH_PopupListBox provides a list box-type selec-
tion sub-control that displays only the current selection until it is
clicked (see figure 5.133).

Figure 5.133

It offers dynamic color and font selection for both the text display/click
area and the popup list box.

You can opt to fix the pop-up’s position, or create a floating window.
Use the horizontal and vertical offsets to specify its position relative to
the text display/click area.

DH_PopupMenu

Figures 5.134, 5.135 and 5.136

This list selection sub-control pops up a standard Windows menu
when its Show Menu plug triggers (see figure 5.135). The module
appears on the panel view as a transparent rectangle (see figure 5.136).
Clicking the rectangle also displays the menu.

Extending the Sub-control Toolkit
You can create a formatted menu with multiple columns, vertical and
horizontal dividers, and non-selectable labels. To do this, build a cus-
tom list with DH_TextList, DH_TextList2 or one of the KDL
GuiList2<any> modules, and insert special formatting characters into
it. Figure 5.137 provides an example. See the DH_PopupMenu docu-
mentation in the DH_Sub-ControlPak User’s Guide for details on spe-
cial formatting characters.

Figure 5.137

Numeric I/O
DH_Breakpoint Input DH_BreakpointInput is a graphic sub-control
for entering and displaying two-dimensional data such as an envelope’s
amplitude and time. It feeds out horizontal (X) values and vertical (Y)
values as two parallel arrays accessed by the modules described in the
section “Float Array Processing” on page 246.

Figure 5.138
261

Chapter 5 All About Sub-controls

262
Double-click to create more breakpoint nodes; double-click an existing
node to delete it. You can lock the number of nodes, as well as the first
and last nodes’ positions. The breakpoint display handles output as well
as input. If the values in the X or Y arrays change, the nodes move
accordingly. Node positions may be saved and restored with the patch.

The resizable graphic area scrolls and zooms horizontally. You can
select colors for background, lines, nodes, and scale dynamically.

DH_ColorPicker

Figure 5.139

DH_ColorPicker lets you use a standard Windows color chooser dialog
(see figure 5.140) to select GUI Input/Output sub-controls’ color. It pro-
vides the selected color in text form as separate red, green, and blue val-
ues with ranges of 0 to 255, and as a composite RGB integer value of
the type accepted by most DH GUI Input/Output sub-controls.

Figure 5.140

Extending the Sub-control Toolkit
DH_ContourInput DH_ContourInput provides a resizable GUI sub-
control for entering and displaying a series of float values. The height
of a vertical line segment signifies each value. It sends out an array
accessed by the modules described in the section “Float Array Process-
ing” on page 246.

Figure 5.141

Dragging the cursor across the Contour display window adjusts the
segments’ heights. You can center the baseline as shown in figure
5.141, or place it at the display’s bottom or top. The module handles
output as well as input. The displayed contour changes to reflect chang-
ing array values.

DH_MinMaxBar

Figures 5.142 and 5.143

DH_MinMaxBar lets you enter and display a value range intuitively by
sight. Orient the bar vertically or horizontally. You can adjust the high
and low values separately, but they may not overlap. Holding the Shift
key down while dragging the mouse moves minimum and maximum
in tandem. The module handles input and output. The GUI adjusts to
reflect Min and Max Value plugs’ changing values.
263

Chapter 5 All About Sub-controls

264
DH_MultiStepInput

Figure 5.144

DH_MultiStepInput is another GUI I/O sub-control for entering and
displaying a series of float values accessed by the modules described in
the section “Float Array Processing” on page 246. A bar’s height repre-
sents the given value. The # Points plug determines the number of
bars. Hold the Ctrl key down while dragging a bar’s height to make fine
adjustments. DH_MultiStepInput works much like
DH_ContourInput. Choose the one with graphics better suited for its
target parameters. Again, the module handles output and input. The
bars move to reflect array value changes.

Figure 5.145

Extending the Sub-control Toolkit
Text I/O

DH_PopupTextDisplay DH_PopupTextDisplay initially appears on
the panel as a transparent rectangle, as in figure 5.147. Click it to view
its Text plug’s value in the selected font and colors.

Figure 5.146

The transparent rectangles for the two DH_PopupTextDisplays in fig-
ure 5.148 overlay the knob controls’ labels, so that clicking KT or E2
pops up the longer labels from the DH_PopupTextDisplays.

Figures 5.147 and 5.148

DH_TextDisplay

Figure 5.149

DH_TextDisplay displays read-only text strings in the selected font and
colors. For a transparent background, set the Bkgd RGB plug to −1.
265

Chapter 5 All About Sub-controls

266
DH_TextIO

Figure 5.150

DH_TextIO handles text input and output. Simply type to enter text;
unlike SE Text Entry2, DH_TextIO does not require you to press the
Enter key. It displays text in the selected colors and font. DH_TextIO is
always ready to accept typed input, so it remains on top regardless of its
and other modules’ To Front or To Back settings, and you cannot set its
background to transparent.

Parameter Interface Modules

These modules’ primary purpose is to store and retrieve sets of values
to and from patch storage.

DH_PatchArray Modules

Figure 5.151

DH_PatchArray-Float stores and retrieves numeric values by index.
DH_PatchArray-List stores and retrieves text-based values in an
indexed list. DH_PatchArray-Text stores and retrieves text-based values
by index. All three save values in either of two modes:

❖ Global mode saves a single float array, list, or text array that does not
change when the patch is changed.

Extending the Sub-control Toolkit
❖ Per Patch mode provides a separate float array, list, or text array for
each patch.

DH_PatchArray-List has a Load From List plug that lets you populate
the list with items from the list of another sub-control connected to the
right-side List plug.

Memory for the array or list is allocated automatically as needed. Cur-
rently, patch memory stores up to 1,000 characters.

Routing Modules

Routing sub-controls fall into two sub-groups:

❖ Simple Routing Modules

❖ Route Switches

Simple Routing Modules
Simple routing modules let you to connect sub-controls in cases where
SynthEdit’s rules normally prevent direct connection.

DH Splitters, DH_TextRedirector

Figure 5.152

SynthEdit defines left-side plugs as inputs, and right-side plugs as out-
puts, and prohibits you from connecting inputs to inputs and outputs
to outputs. As discussed in the section “It Goes Both Ways—Data Flow
and Animation” on page 201, GUI data flows both ways, so left-side
plugs are not necessarily inputs, nor are right-side plugs necessarily
outputs. To further complicate routing, left-side GUI plugs are masters
that accept multiple connections (see figure 5.153). Those on the right
are slaves that connect to one master only. You need a splitter to route a
GUI value from a plug on a module’s right to several destinations (see
figure 5.154).
267

Chapter 5 All About Sub-controls

268
Figures 5.153 and 5.154

Splitters can also reverse the direction of flow. For example, figure
5.155 shows how splitters reverse the flow through a
DH_FloatExpCurve to obtain the inverse of an exponential function—a
logarithmic function.

Figure 5.155

RH Redirect Set

Figure 5.156

These modules redirect the input to the output on the same side to
enable left-to-left and right-to-right connections.

SL Gui Splitter Series

Figure 5.157

Another set of splitters, these include right and left hand versions.

Extending the Sub-control Toolkit
Route Switches
These modules let you route a source to one of several destinations,
one of several sources to a destination, or control data flow over a given
route.

DH_Route Switches

Figure 5.158

DH Route switches come in one-to-many and many-to-one configura-
tions for each of the GUI data types (see figure 5.158). Because of GUI
connections’ bidirectional nature, each of the one-to-many switches
also serves as a right-to-left many-to-one switch, and each many-to-one
switch can do double duty as a right-to-left one-to-many switch.

KDL DiscoSwitch bf

Figure 5.159

This module acts as a single-pole, double-throw (SPDT) toggle switch
that routes the input Value to the Off output when the Bool plug is
False, and to the On output when the Bool plug is True. The unselected
output retains its previous value when the switch’s status changes.
269

Chapter 5 All About Sub-controls

270
OL Control Reset2

Figure 5.160

When the Gate triggers, this module sends the Reset Value to the Value
output plug. In a typical application, this plug connects to the Value
plug of a Patch Mem–Float.

OL Float Gate

Figure 5.161

The OL Float Gate switches a float connection, routing the value of the
In plug through to the Out plug while the Gate is True. Switching the
Gate on, off, or in either direction can serve to send a Reset Value,
depending on the Reset Mode.

SL SliderLinker

Figure 5.162

As the name suggests, this module is handy for linking and unlinking
two sub-controls. When the Link plug is True, the Slider 1 plugs con-
nect to the Slider 2 plugs; False disconnects them.

Extending the Sub-control Toolkit
Miscellaneous Modules

These sub-controls either serve special purposes, or don’t fall neatly
into our main categories. They include three sub-groups:

❖ MIDI

❖ File Handling

❖ Other

MIDI
Kelly Lynch’s conversion modules include several sub-control modules
providing MIDI processing interfaces. They entail more than merely
simple data type conversions, so they merit discussion as a separate
group. If you are contemplating using these modules, bear in mind
that GUI and audio are separate processes defying perfect synchroniza-
tion. Though many other KDL MIDI modules convert to and from non-
GUI data types, you won’t find them discussed here because they are
beyond the scope of sub-controls.

KDL GuiFloat2MIDI, KDL GuiInt2MIDI, KDL GuiList2MIDI

Figure 5.163

This set of modules generates a MIDI message based on the informa-
tion sub-controls provide for each of a MIDI message’s components:

❖ Status

❖ Channel

❖ Data 1

❖ Data 2

KDL GuiFloat2MIDI and KDL GuiInt2MIDI can also accept all three
bytes of the MIDI message. A Boolean trigger or an input value change
initiates the message.
271

Chapter 5 All About Sub-controls

272
KDL MIDI2GuiBool, KDL MIDI2GuiFloat, KDL MIDI2GuiInt, KDL
MIDI2GuiText

Figure 5.164

These modules deliver data to other sub-controls based on incoming
MIDI messages. KDL MIDI2GuiBool’s True/False output values
depend on whether the components of the MIDI message match the
specified values. The other modules’ output values comprise the mes-
sage and its components’ float, integer, or text representations.

File Handling
These modules let you add custom file browsing and selection features
to your GUI.

DH_FileList, DH_FileList2

Figure 5.165

DH_FileList creates a file selection list in a specified directory.
DH_FileList2 also enables browsing in other directories.

Extending the Sub-control Toolkit
Other
If a module didn’t fit comfortably into any of our categories, it ended up
in this group.

DH_ControlMerger2

Figure 5.166

DH_ControlMerger2 accepts input from multiple sub-controls, and
feeds out the current value and index of the most recently adjusted sub-
control. Ctrl In plugs replicate automatically on demand. Starting with
0, it indexes connections from the top down.

DH_ControlTrigger2, DH_CtrlTriggeredTimer

Figure 5.167

DH_ControlTrigger2 sends a one-sample pulse when an input value
changes. Output values may be inverted so that it is normally high with
a zero pulse. DH_CtrlTriggeredTimer sends a pulse of a specified dura-
tion when an input value changes.
273

Chapter 5 All About Sub-controls

274
SL_FloatAnimator

Figure 5.168

This module issues incrementing and decrementing (rounded) floats
at a specified rate. It runs in the GUI thread, so 20 frames per second is
the fastest it will go. And it may not be precise, especially at higher
frame rates. Enter the number of frames, mode (forward, reverse, alter-
nating), looping (on/off), and rate (frames per second) as parameters in
the module’s right-click Properties.

More Hands-on Examples

That’s it for our tour of third-party sub-controls. Now let’s look at some
of the ways we can use them. These examples illustrate techniques and
familiarize you with sub-controls so you can design prefab controls of
your own. Hands-on learning is the best method of acquiring the skills
you need, so be sure to try the examples and experiment freely.

FloatIO Prefab

The first example is a simple prefab useful for entering and displaying
float values as shown in figure 5.169. Conveniently, it plugs into a float
value on the left or right. Figure 5.170 shows the prefab’s simple struc-
ture comprising a Text Entry2 connected to a Text To Float. Note how
the DH_FloatSplitter connects the Text To Float’s Value plug to both
right- and left-side plugs.

Figures 5.169 and 5.170

More Hands-on Examples
Custom Selector Button Redux

Back in “Putting Your Sub-control Skills into Practice” on page 220, we
built a selector button prefab using static text labels inside containers,
and switched the containers’ Controls on Parent inputs on and off to
show the selected item (see figures 5.74 to 5.76). There is a better solu-
tion—dynamic labeling based on the list to which the selector actually
connects. Case in point: Say you connect the selector button to the SE
oscillator’s Waveform plug, and want the label to display the selected
waveform from the list as shown in figures 5.171 and 5.172.

Figures 5.171 and 5.172

To do this, you must find a way to extract the currently selected item’s
name from the list, which is what a DH_ListExtractor does. Connect it
to the Value plug of the Patch Mem–List 2 (see figure 5.173). We used a
Text Entry2 to display the selection. You could do the same or opt for a
DH_TextDisplay, depending on which offers the colors and fonts you
prefer.

Figure 5.173
275

Chapter 5 All About Sub-controls

276
You could also connect Bitmap Images to both the Increment and Dec-
rement plugs of Increment2 to step through lists in both directions, as
shown in figures 5.174 and 5.175.

Figure 5.174 and 5.175

Here’s another alternative if the standard Windows spinner controls fit
into your design scheme: Replace the Bitmap Image and Increment2
sub-controls with a DH_VSpinCtrl or a DH_HSpinCtrl as depicted in
figures 5.176 and 5.177.

Figures 5.176 and 5.177

More Hands-on Examples
File Name Extractor

This example demonstrates some options for manipulating text. We’ll
build a prefab to extract just the name of a file for display, without the
path or file extension, from a string containing the full file path.

Here’s our example text string:

C:\audio files\loops\drum\100bpm\100bpm funk groove 4.wav

The name we aim to extract is shown in italic in the string above—
100bpm funk groove. To do this, take the substring beginning one char-
acter after the last backslash (\), and set its length so it cuts off charac-
ters to the right of the last dot (.). This breaks down into a three-step
procedure, or algorithm:

1 Search right to left from the end of the string to find the rightmost
backslash’s position, and add one to obtain the substring’s starting
position.

2 Search right to left from the end of the string to find the position of
the rightmost dot (.), and subtract one to pinpoint the position of the
last character you want to extract. The position’s value is also the
length of the total string, minus the length of the dot (.) and every-
thing to its right.

3 To obtain only the length of the desired substring, subtract from the
result of step 2 the number of characters up to and including the last
backslash (\). You calculated the rightmost backslash’s position in
step one, so all you need to do now is subtract it from step 2’s result.

Design the circuit step by step, following the algorithm. Figure 5.178
shows you how to implement step 1.

The full path string flows into DH_StringLength, DH_StringSearch,
and DH_SubString. The Search String is a backslash (\). Set the Right
to Left value of the DH_StringSearch to True in its right-click Proper-
ties. The Start Position is the end of the string because
DH_StringLength sets it to the string’s length.
277

Chapter 5 All About Sub-controls

278
Figure 5.178

DH_SearchString’s output goes to a DH_FloatSplitter so that we can
use it both here and in step three.

DH_FloatAdd adds one to the position found by DH_SearchString, and
the sum provides the Start Position input value for DH_SubString.

Figure 5.179 shows a second DH_StringSearch added to search for the
dot (.) from step 2. Again, Right to Left is set to True, and the start posi-
tion is set to the string’s length so the search begins at the string’s end.

More Hands-on Examples
Figure 5.179

DH_FloatSubtract subtracts one from the position of the dot (.) to find
the final character’s position, completing step 2.

In step 3, the bottom right DH_FloatSubtract subtracts the rightmost
backslash’s position from the final character’s position to obtain the
length for the DH_SubString module.

Figure 5.180 shows an example of the prefab in use.

Figure 5.180
279

Chapter 5 All About Sub-controls

280
Real-time Color Controls

Why not let your users get creative and customize the colors of your
GUI’s features with controls like these two? The first uses three knobs
that dial in the amounts of red, green, and blue in the color (see figure
5.181). Note the DH_IntSplitter; it sends the RGB value to multiple
destinations. Figure 5.182 maps the structure.

Figure 5.181

Figure 5.182

For the knobs, we adapted the Knob Sm prefab from the SE Insert:Con-
trols menu to provide float output values. Figure 5.183 shows the
revised Knob structure. Connected to plugs on the Patch Mem–Float
inside the knob structure, the knob’s Min and Max Values range from 0
to 255. Figure 5.182 shows how a DH_FloatToText converts each float
value into text, and how DH_TextToRGB combines them to create a
composite integer RGB value.

More Hands-on Examples
Figure 5.183

The second color control uses a DH_MultiStepInput to create a GUI
feature with three bars for hue, saturation, and luminance. The control
itself changes color as the bars are adjusted (see figure 5.184). The
DH_MultiStepInput’s #Points is set to 3 to display three bars, and it
feeds out an array of three float values. A DH_ArrayToFloats converts
the array to three separate float values.

Figure 5.184

Each DH_MultiStepInput bar’s output value ranges from 0 to 10,
which must be scaled to the correct range for DH_HSLtoRGB. With
several choices of input range available, we opted for 0 to 1, which
entails dividing the MultiStepInput’s output values by 10. Division con-
sumes far more CPU power than multiplication, so let’s multiply by 0.1
instead of dividing by 10. The two are mathematically equivalent, but
the former is so much more efficient. DH_HSLtoRGB converts the
hue, saturation, and luminance values to composite integer RGB for-
281

Chapter 5 All About Sub-controls

282
mat. A DH_IntSplitter routes this to the output, and back to the
DH_MultiStepInput’s Fill RGB and Outline RGB plugs so bars will
change to reflect the color specified by HSL values. Note that in con-
trast to audio circuits, GUI circuits permit direct feedback.

Quantized Tuning Knob

Synths typically provide coarse and fine-tuning controls for oscillators,
with the coarse control quantized to semitones (half steps), and the fine
control covering the range between two half steps. SynthEdit uses a one
volt = one octave pitch scale, with 5 volts = A440. The difference
between two half steps is always 1/12th, or approximately 0.083333
volts, which makes the math of quantizing to semitones easy. So all we
need to do is quantize our coarse knob’s output value to the nearest
12th.

Say you want to use this control for an audible oscillator rather than an
LFO. This means you need only work with pitch values ranging from 0
to 10. This range comprises 120 half-steps. The knob’s Bitmap Image
modules’ Animation Position ranges from 0 to 1, so multiply it by 120.
This quantizes the knob’s position to 120 discrete integer values. The
fine-tuning knob’s and the quantized coarse knob’s output values add
up, so the floor function—which is the highest integer not greater than
the input value—provides the quantization we need. It simply trun-
cates any fractional part of positive numbers. Once quantized, values
must be rescaled to the 0-to-10 range, so we’ll divide by 12. For any Ani-
mation Position in the 0-to-1 range, this yields the corresponding num-
ber in the 0-to-10 range, rounded down to the next lower 12th.

Figure 5.185 shows the structure of our Quantized Knob prefab.
DH_FloatMultiply multiplies the Animation Position by 120.
DH_FloatFloor rounds the product down to the next lower integer.
DH_FloatDivide divides by 12 to convert our 120 discrete values from
the scale of 0 to 120 to the scale of 0 to 10. Note that the result goes to
the Patch Mem–Float’s Value plug rather than the Animation Position
plug because we have already done the scaling.

More Hands-on Examples
Figure 5.185

4-panel Osc Selector

Figure 5.186

In this example, you’ll construct a switchable panel display for control-
ling four oscillators. It employs the previous example’s quantized tun-
ing knob. Your results should look something like figure 5.186. All four
oscillators sport the same controls. A skinned version of the standard
SE List Entry control with its Appearance set to Button Stack serves to
select an oscillator for editing.

First, let’s build a prefab providing a set of controls for one oscillator. It
comprises our quantized tuning knob, a fine-tuning knob, a
DH_PopupListBox to select the waveform, and a DH_TextDisplay to
label the oscillator. Figure 5.187 depicts the structure.
283

Chapter 5 All About Sub-controls

284
Figure 5.187

A standard knob prefab from the Insert:Controls menu will do for fine-
tuning. Set its high value to 0.083333 (1/12th), and its low value to 0 so
its full range is one semitone. Its value is added to the quantized knob’s
output value. We opted for a DH_PopupListBox because it displays the
current selection while taking up little space when not in use, and
expands to show all of the available options (in this case) when clicked
(see figures 5.188 and 5.189). Note that DH_TextDisply and
DH_PopupListBox’s titles are blanked out, and do not appear on the
panel view. The DH_TextDisplay Text In plug connects to the IO Mod
so a Name field appears on the prefab’s Properties. This makes it easy
to change the label without having to unlock the prefab or open its
structure view.

Figures 5.188 and 5.189

More Hands-on Examples
All that remains to be done now is to replicate the oscillator controls
prefab thrice, change their Name fields, and arrange them for switch-
ing. We picked BK_ListToBool to handle the switching because it con-
nects direct to a standard SE List Entry, and we wanted to use our
skinned version of this control’s button stack rendition. Conventional
SE controls and sub-controls are not necessarily mutually exclusive. If a
conventional control satisfies one of your demands, feel free to mix and
match it with sub-controls as you see fit.

Figure 5.190

Figure 5.190 pictures the 4-panel osc selector’s overall structure, yield-
ing the same panel view as in figure 5.186. It takes a little effort to line
up the four sets of controls perfectly in the panel view so that they don’t
shift about when you switch from one oscillator to another. Once in
line, they’ll serve your users well.

Of course, this osc panel selector could use any selection method that
sets one Boolean output to True and all others to False. You could use
one of the KDL PanelSwitch modules with Bitmap Images to create a
tab-like effect as shown in figure 5.191. Here, the DH_TextDisplays on
every oscillator control set prefab’s panel view are sited so each appears
below its tab when the tab is selected. Figure 5.192 shows this struc-
ture.
285

Chapter 5 All About Sub-controls

286
Figures 5.191 and 5.192

Using One Control Readout

Figure 5.193

Providing a single panel to display the currently adjusted control’s
name and value conserves screen space and makes it easier for users to
focus on this info. Figure 5.193 depicts an example where the currently
adjusted control is Filter 1’s resonance knob, and the central readout
indicates as much.

More Hands-on Examples
Figure 5.194 shows one way to set this panel up. DH_ControlMerger2
accepts multiple float inputs, and feeds out the most recently adjusted
value and index. Though we wired up just the three controls for this
example, this suffices for demonstrating how this works. The index is
converted to an integer, and used to access an item in the list managed
by DH_TextList2. Pre-loaded from a text file, the list contains entries
for the three controls currently connected to DH_ControlMerger2:

Filter 1 Cutoff;
Filter 1 Resonance;
Filter 1 Env;

List items are indexed 0, 1, and 2. DH_ControlMerger2 indexes inputs
from the top down starting at 0, so moving the center knob yields an
index of one.

Figure 5.194

Given that index, DH_TextList2 selects Filter 1 Resonance, and sends
this text string to its Selection plugs. The string feeds DH_TextAppend,
providing the input for the first item. The text in the little box appends
the string, yielding Filter 1 Resonance: %0.0f. This text then goes to
the DH_FloatFormat Format plug.

DH_FloatFormat routes the Format string unchanged, apart from
%0.0f. This is a format specification that tells DH_FloatFormat to sub-
stitute the value at the Ctrl Value plug, at that position in the text string.
The 0.0 tells it to use neither a minimum field width, nor any digits
after the (implied) decimal point. DH_ControlMerger2’s Ctrl Value
provides the control value to DH_FloatFormat. This is the filter 1 reso-
nance knob’s current value, so the number changes as the knob moves.
287

Chapter 5 All About Sub-controls

288
The knobs provide values in the standard SynthEdit range of 0 to 10.
So, how can you display the cutoff frequency in Hz, and the percentage
amount (0 to 100 %) by which the envelope modulates the cutoff? You’ll
find an answer in figure 5.195. A DH_HzToVolts2 sits between the fil-
ter 1 cutoff knob and DH_ControlMerger2. Able to convert both ways,
here this module converts the 0-to-10 voltage scale to Hertz. All it takes
to convert the filter’s Env knob’s value to percent is to multiply by 10, so
a DH_FloatMultiply is on board to do this job. Note that this affects
GUI values only. The controls’ Volts Out plugs still send standard 0-to-
10 volt signals to the DSP modules.

Converting numbers is not enough, though. You also need to add the
unit of measure, Hz, to the cutoff frequency, and a percent sign (%)to
the envelope modulation amount. We added another DH_TextList2 to
do this. It preloads with a text file containing:

 Hz;
;
%%;

Figure 5.195

This list uses the same index as the first. The first line is “ Hz;” with a
space as the first character to provide a space between the frequency
number and the Hz unit abbreviation. Resonance amount requires no
adjunct, so the second item is a line with a blank space followed by a

More Hands-on Examples
semicolon. Use two signs (%%) to append percentages because
DH_FloatFormat interprets a single % as the beginning of a format
specification. Tag the second DH_TextList2’s output value onto the end
by connecting it to the next available plug on DH_TextAppend.

Note that the tiny text box used for format specification is nothing but a
containerized Text Entry2 with Controls on Module set to True, and
Controls on Parent set to False to hide it from the panel view.

Graphic MIDI Control Indicator

Figure 5.196

For our next little trick, we’ll build a graphic indicator to display the sta-
tus of three MIDI controls—the pitchbend wheel, mod wheel, and
channel aftertouch. Its vertical bar’s heights indicate mod wheel and
aftertouch amounts. A vertical bar indicates the pitch wheel’s amount
of positive action above the midline, and negative bend below it (see fig-
ure 5.196).

Let’s start by building the simplest indicator component first—the mod
wheel display—and save the most complex for last. We’ll use the
DH_MinMaxBar for the display. Set the orientation to Vertical and Min
Value to 0. Max Value will control the height of the bar.

Our plan of attack is to:

❖ Isolate mod wheel messages from the MIDI stream

❖ Extract float values representing the modulation amount

❖ Scale these values to fit DH_MinMaxBar’s 0-to-10 range

First filter everything except mod wheel messages from the MIDI
stream using a DH_MIDIFilter+. Mod wheel messages are sent as
MIDI CC01 messages, with the controller number in the first data byte,
so set the Status to Control Change, and Data1 Min and Data1 Max to
one as shown in figure 5.197.
289

Chapter 5 All About Sub-controls

290
Figure 5.197

A KDL MIDI2GuiFloat extracts the modulation amounts from CC01
messages, providing them as float values. The messages’ second data
byte indicates the modulation amount as a value ranging from 0 to 127.
KDL MIDI2GuiFloat’s Data 2 plug issues this as a float value.

DH_FloatDivide then divides the amount by 127/10 = 12.7 to scale it to
the 0-to-10 range.

Figure 5.198 shows the full circuit for the mod wheel. Note how the
DH_FloatSplitter connects DH_FloatDivide’s output to DH_MinMax-
Bar’s MaxValue plug, both of which are right-side plugs.

Figure 5.198

More Hands-on Examples
Now let’s tackle the channel aftertouch indicator. Though very similar
to the mod wheel indicator, it requires a few changes:

❖ Change the status of DH_MIDIFilter+ to Channel Aftertouch.

❖ Set Data1 Min to 0 and Data1 Max to 127 because the first data byte
indicates the aftertouch amount.

❖ Use the KDL MIDI2GuiFloat’s Data 1 output rather than the Data2
output.

The pitch wheel indicator poses a bigger challenge because the bar
must clear the midline for an upward bend, and dip below it for a
downward bend. This means you have to configure DH_MinMaxBar’s
inputs so that when the wheel turns past the center position, Max Value
ranges from 5 to 10, with Min Value remaining fixed at 5. Likewise,
when the wheel turns past the center position in the other direction,
Max Value must remain fixed at 5, while Min Value ranges from 5
down to 0.

Also bear in mind that pitch bend messages use both data bytes. The
first data byte holds the value’s least significant byte (LSB), and the sec-
ond data byte holds the most significant byte (MSB). MIDI bytes
employ 7 bits representing 128 different values from 0 to 127, so a pitch
bend message’s value is 128 times the MSB value plus the LSB value.

Let’s get the ball rolling by formatting the pitch bend value as a float
value ranging from 0 to 10. Again, a DH_MIDIFilter+ filters out every-
thing apart from the messages of interest, in this case, pitch bend mes-
sages. The defined status is Pitch Bend, and both Data1 and Data2 are
set to the full range of 0 to 127.

Here’s how to combine the LSB and MSB: Use a DH_FloatMultiply to
multiply the KDL MIDI2GuiFloat’s Data 1 output value (the MSB) by
128 and a DH_FloatAdd to add Data 2’s output value (the LSB). Note
that unlike voltages, which add up automatically when connected to the
same point, GUI values must be added explicitly using an add module.
The result is then divided by (127 ∗ 128 + 127)/10 = 1638.3 to scale it
down to the 0-to-10 range. Figure 5.199 shows the circuit we have con-
structed so far.
291

Chapter 5 All About Sub-controls

292
Figure 5.199

Now let’s see how we can make DH_MaxMinBar’s Min Value range
from 0 to 5 when the scaled pitch bend value is less than 5, and equal to
5 when the pitchbend value is greater than 5. In other words, we want
the Min Value to be the smaller of the current value or 5. And we want
Max Value to range from 5 to 10 for values above 5, and remain at 5 for
lower values, so it must equal the larger of the current value or 5.

In figure 5.200, DH_FloatDivide’s scaled output splits up, feeding a
DH_FloatMin and a DH_FloatMax, each of which receives a constant 5
as another input. DH_FloatMin and DH_FloatMax’s outputs provide
the desired inputs for DH_MaxMinBar’s Min Value and Max Value
plugs.

More Hands-on Examples
Figure 5.200

The Future of Sub-Controls

Sub-controls afford us so much greater flexibility in building SynthEdit
GUIs. And the SynthEdit SDK makes it so easy for third parties to cre-
ate sub-controls, putting a wealth of powerful tools into the hands of
SynthEdit developers. With ever more programmers developing sub-
control modules, sub-controls’ number and variety will surely continue
to grow.

SynthEdit’s creator, Jeff McClintock, notes some key changes are in the
pipeline that will make sub-controls easier to use in SynthEdit 1.1 and
future versions. Redesign efforts aim to alleviate some of native SE sub-
controls’ annoying little quirks, like having to use a splitter because the
plug you want to connect to sits on the wrong side. Lists will be made
more flexible, enabling us to work with list text as text and selections as
integers. The new version of the SDK will afford programmers even
greater leeway to develop new and different kinds of modules. Jeff
intends to ensure the application remains compatible with legacy third-
party modules, so you can enjoy new goodies without sacrificing the
great tried-and-true tools featured on these pages.
293

Appendix

A Brief History of Synthesizers

A Moog Minimoog (photo by Stefan Hund, www.emc-de.com)

Bob Moog unveiled the Minimoog in 1970, marking the first real mile-
stone in the history of synthesizers. Wieldy enough for musicians to
play on stage, the Minimoog had the added benefit of bearing the defin-
itive synthesizer pioneer’s name. It wasn’t the first of the breed. Mam-
moth modular systems requiring musicians to connect modules with
patch cords merely to create a single sound predated it. The hassle of
taming these beasts proved too much for all but a few musicians and
bands, among them ’70s-era sonic adventurers Keith Emerson, Walter
nee Wendy Carlos, Tangerine Dream, and Klaus Schulze. The Mini-
moog wasn’t even the first pre-wired, compact synthesizer. The EMS
VCS 3, embraced by artists such as Hawkwind, Yes, and Brian Eno,
preceded it in 1969.

The Minimoog’s basic design provides the template for the classic
synth. It sported three VCOs with one doing double duty as a modulat-
ing LFO, a mixer section, a low-pass filter with resonance, and two
envelope generators, one for the filter and one for amplifier). Competi-
tors soon brought to market variations on the theme. ARP released the
Odyssey in 1972, adding oscillator synchronization, sample and hold,
and a high-pass filter to the sonic equation. The semi-modular ARP
2600 followed in 1971. Though portable and pre-wired, it still offered
some atavistic external cable connections.
295

Appendix A Brief History of Synthesizers

296
This archetypal monophonic analog synthesizer was produced until the
early ’80s. Featuring four VCOs, two LFOs, oscillator synchronization,
cross-modulation, two envelope generators, and four-voice polyphony,
the Korg MP-4 Mono/Poly was the most versatile of the bunch, at least
in terms of functions.

1978 saw the birth of fully programmable polyphonic analog synthesiz-
ers, with the Prophet 5 by Sequential Circuits being the first of the kind,
followed by the Oberheim OB series in 1979, the Korg Trident and the
Roland Jupiter 8 in 1980, and a year later the Moog Memorymoog. These
held a lot more appeal than their monophonic forebears, particularly
for pros. Streamlined versions of programmable polyphonic synthesiz-
ers hit the streets in 1982, among them the Korg Polysix and Roland
Juno 60. Though limited to a solitary oscillator, they did ship with a sub-
oscillator and an affordable price tag. As engineers added more digital
control features on the inside, fewer knobs and sliders remained on the
outside, replaced by data entry keys, buttons, knobs, and program
selectors. This wave washed to shore the Korg Poly 61, debuting in
1983, followed in 1984 by the Sequential Sixtrak, the first multi-timbral
synthesizer, and the Korg Poly 800.

The turn of that decade also saw the rise of a new generation of musical
instrument—the sampler. Though it featured some synth functions,
samplers enabled users to record waveforms of their very own to the
machine. First came the Fairlight CMI (Computer Musical Instrument)
and the NED Synclavier in 1979, and the EMU Emulator in 1980. Their
price tags put them far out of mere mortals’ reach.

Another species of synthesizer emerged in late 1983 bringing to the
world a new type of synthesis called frequency modulation, or FM for
short. The Yamaha DX7 birthed a different brand of sound, bringing a
jaw-dropping 16 voices to bear, versus typical polyphonic analog syn-
thesizer’s paltry six or eight, at best. The DX7 excelled at emulating the
chiming sounds of magnetic pianos such as the Fender Rhodes and
Wurlitzer electric piano favored by many keyboardists. This upped its
marketability measurably, making it an attractive proposition for musi-
cians who otherwise wouldn’t have given a second thought to synthe-
sizer. As digital sound generators raced up the sales charts, they
crossed paths with analog synthesizers on their way down. This grad-
ual but temporary decline bottomed out in the early ’90s.

Another class of synthesizer floated up out of the primordial sound-
generating soup in the mid ’80s. Given the unflattering nickname rom-
plers—a morpheme of ROM and samplers—devices like the Korg DW-
8000 (1985), Kawai K3 (1986) and Ensoniq ESQ1 (1987) played wave-

forms stored digitally in ROM chips, yet processed sounds using ana-
log filters and the like. The Sequential Prophet VS in 1986 and the PPG
Wave 2 in 1981 brought other forms of synthesis to the world. Those in
the know called the Prophet VS a vector synthesizer, for it could toggle
among four waveforms. The PPG Wave 2 was dubbed a wavetable syn-
thesizer for its ability to scan through a sequence of waveforms stored
in ROM. However imaginative their names, they were in essence sub-
tractive synthesis-driven romplers. The Waldorf MicroWave (1989),
Wave (1995), and later MicroWave II (1997)/XT (1998) took up where
the PPG synths left off.

Two more types of synthesis from this era bear mentioning. Casio
developed phase modulation for their CZ (1985) and VZ (1988) models,
while the Kawai K5 (1987) based on additive synthesis. Like FM synthe-
sizers, they lacked the classic subtractive sound-sculpting capability
that comes courtesy of filters.

The Roland D-50 (1987) and the Korg M1 (1988) went the whole digital
hog. Though their filters, effects, and all other sound-shaping compo-
nents were digital, they continued to take the subtractive path—oscilla-
tor → filter → amplifier plus LFO and additional modulation sources,
with effects like chorus and reverb slapped on for good measure. Rom-
plers are still in production, though with far richer, many more select-
able filters and modulations, and enhanced sound quality, especially
when it comes to waves in ROM. Early models sported 8-bit systems,
followed by 12 and 16 bits with short single-cycle and attack wave-
forms. Today’s synths ship with very complex waveforms. ROM chips
in instruments like the current Yamaha Motifs ES contain up to 173 MB
of wave data (uncompressed).

Though comparatively short, waveforms stored in ROM can conjure
strikingly complex sounds. Listen to a Korg Wavestation (1990), which
brought the benefits of highly flexible wave sequencing to envelope-
controlled oscillators, and you are sure to agree. Its unremarkable com-
mercial success notwithstanding, the Roland JD-800 (1991) was
another highlight of the day. Sliders for touchy-feely instant editing
made a comeback on its chassis.

Analog synthesizers’ renaissance came in the early ’90s, sparked by the
1982 vintage Roland TB-303’s contribution to techno music’s commer-
cial success. Suddenly vintage synthesizers were back in vogue, and
everybody wanted to interact in real time, fondling faders and nudging
knobs to tweak sounds. Soon small companies released a new genera-
tion of analog synthesizers. The Novation Bass-Station (1995), Doepfer
TS-404 (1995), and MAM MB-33 (1997) all sported dedicated knobs,
297

Appendix A Brief History of Synthesizers

298
switches, and MIDI capability. The analog wave peaked in 2000 with
the release of the Alesis A6 Andromeda, a fantastically complex 16-voice
analog synthesizer. In 2002, even Bob Moog jumped aboard the gravy
train and released an enhanced, programmable Minimoog Voyager.

In the mid ’90s, the guys and gals in white coats let physical modeling
synthesis out the lab and into musicians’ hands. Offering a complex
string model, the Yamaha VP1 debuted in 1995, followed by the VL1/
VL7 in 1995 with reed and brass models. Korg’s efforts yielded the
monophonic Prophecy in 1996 and the polyphonic Z1 in 1997, both fea-
turing various models, analog oscillator emulations among them. Tech-
nics choose a different path for the WSA-1 in 1996, using ROM wave-
forms as drivers. Modeling algorithms and a subsequent subtractive
chain processed the waveforms.

That same year, Clavia released the Nord Lead, the first DSP-powered
virtual analog synthesizer with dedicated knobs and switches for
instant editing. The Roland JP-8000 (1997), Novation SuperNova (1998),
Access Virus A (1998), and Waldorf Q (1999) followed in its footsteps.

Though many brands of synthesis set out to rule the world, none would
match the tenacity and ubiquity of classic subtractive synthesis harking
back to the Minimoog. Its staying power is easily explained: Easy to
grasp, handle, and program, subtractive synthesis is a powerful, intui-
tive way to shape sound. A good sound does not care how it’s been created.
(HGF, 2001)

To learn more about synthesizers and synthesis, visit:

http://www.vintagesynth.org
http://www.synthmuseum.com
http://dictionary.laborlawtalk.com/synthesiser
http://www.cim.mcgill.ca/~clark/nordmodularbook/
nm_book_toc.html
http://arts.ucsc.edu/ems/music/equipment/equipment.html

http://www.vintagesynth.org/
http://www.synthmuseum.com/
http://dictionary.laborlawtalk.com/synthesiser
http://www.cim.mcgill.ca/~clark/nordmodularbook/nm_book_toc.html
http://arts.ucsc.edu/ems/music/equipment/equipment.html

Index

Numerics

1 → Many 57
1 Pole LP filter 97
2 Voice Chorus 77
3band1.se1 86
4-panel osc Selector 283

A

Access Virus A 298
Active Detector 183
adding effects 162
adding patches 163
adding voices 78
ADSR envelope 131
ADSR Exp 153
ADSR Invert 152
ADSR module 29
Alesis A6 Andromeda 298
aliasing 106
All pass 25
all-pass filters 63, 80
animation 201, 230
Animation Position 210
Appearance 23
ARP 295
ARP 2600 295
ASCII 256
Attack 29
auto filters 35
autofilter1.se1 36
autofilter2.se1 38
autofilter3.se1 38
autofilter4.se1 39
autofilter5.se1 41
autofilter6.se1 42

autofilter7.se1 45
autofilter7gui.se1 47
autofilter7gui2.se1 47
automation 22
Autosleeper module 185
average filter 97

B

Band pass 24
Band stop 25
BasicModulePak 94, 132
biquad filters 144
Biquad Stable 145
bitcrusher1.se1 109
Bitmap Image 210

Tinted ~ 215
Bitmap image 222
bitmaps as controls 222
BK_ListToBool 285
BK_ListToBools2 238
Bool Splitter 218
Bools to List 203

C

C:M ratio 172
carrier 168
cascading SV filters 142
Casio CZ 297
Casio VZ 297
categories 23
CC 163
center frequencies, ISO standard

87
Choice list box 25
299

Index

300
chorus 77
chorus2.se1 78
chorus3.se1 79
chorus4.se1 80
Clavia Nord Lead 298
color controls 280
comb filter 63
CombX4 container 65
compressor

hard-knee ~ 96
peak ~ 96
soft-knee ~ 99
two-band ~ 120

compressor1.se1 96
compressor2.se1 99
compressor3.se1 102
compressors 93
connections, making ~ 220
constant-q 88
Containerize Selection 60
containers 19

locked ~ 21
main ~ 31

controls 23
~ built with sub-controls 194
dry/wet ~ 50
native SynthEdit controls 193
prefab ~ 226
randomizing ~ 242
real-time color ~ 280

Controls on Module 20, 53
Controls on Parent 20, 53, 120, 223
Conversion 24
CPU performance 181
cross delays 55
crossdelay1.se1 57
crossdelay2.se1 59
crossover filters 116
crossovers.se1 119
custom selector button 232

D

data flow 201
data manipulation modules 203,

236
data type conversion modules 208

data types 200
dB to Animation 204
Decay 29
delay

cross ~ 55
multi-tap ~ 59
ping-pong ~ 55
simple ~ 48
stereo cross ~ 55

delay effects 48
Delay Time 48
delay1.se1 50
delay2.se1 50
delay3.se1 51
delay4.se1 55
Depth knob 159
detuned filters 190
Detuned SV Filters 191
Detuner prefab 134
DH Arithmetic Modules 239
DH Color Format Converters 236
DH DropdownList 258
DH Splitters 267
DH_ArraySequencer 246
DH_ArrayToFloats 246, 281
DH_BiquadFilter 85, 87, 91, 144
DH_BreakpointInput 261
DH_CharacterBitmapDriver 247
DH_ControlMerger2 273, 287
DH_ControlTrigger2 273
DH_CtrlTriggeredTimer 273
DH_dBToVoltage 59
DH_FileList 272
DH_FileList2 272
DH_Float Ceil 239
DH_Float Quantizer 239
DH_FloatAbs 239
DH_FloatAdd 278
DH_FloatArray 247
DH_FloatCompare 240
DH_FloatDivide 282, 290
DH_FloatFloor 239, 282
DH_FloatFormat 249, 287
DH_FloatIncrement 238
DH_FloatMax 240
DH_FloatMin 240
DH_FloatMultiply 282

Index
DH_FloatSplitter 274
DH_FloatSubtract 279
DH_FloatToDigits 240
DH_FloatToText 280
DH_Format 249
DH_HSLtoRGB 281
DH_HSpinCtrl 259, 276
DH_HzToVolts2 288
DH_IntCompare 240
DH_IntSplitter 280, 282
DH_JoystickIn 231
DH_LeftString 250
DH_ListBox 259
DH_ListExtractor 252, 275
DH_ListGenerator 253
DH_ListSearch 253
DH_ListStandardizer 254
DH_MatrixPak 161
DH_MIDIFilter+ 289, 291
DH_MIDIMunger 221
DH_MinMaxBar 289
DH_ModulusOp 241
DH_MultiFilter2 111, 144
DH_MultiFilter2.sem 35
DH_MultiStepInput 264, 281
DH_PatchArray 266
DH_PopupListBox 260, 283
DH_PopupMenu 260
DH_PopupTextDisplay 265
DH_RightString 250
DH_SoftDist 104
DH_StringCompare 250
DH_StringLength 251, 277
DH_StringSearch 251, 277
DH_SubString 250, 277
DH_TextAppend 251
DH_TextArray 252
DH_TextDisplay 265, 275, 283
DH_TextIO 266
DH_TextList 252
DH_TextList2 287
DH_TextRedirector 267
DH_TextToRGB 280
DH_VoltageTodB 95
DH_VSpinCtrl 259, 276
DHTextList2 252

distortion
~ effects 102
fold-back ~ 105

distortion1.se1 108
Doepfer TS-404 297
Dropdown List 212
dry/wet controls 50
dry/wet knobs 37
dual-stage phaser unit 80
DX7 123, 168
dynamic equalizers 85
dynamic processing 93

E

effects 24
adding ~ 162
delay ~ 48
distortion ~ 102
lo-fi ~ 108
modulated delay ~ 69
optimizing ~ 185
pitch-shifting ~ 115

EMS VCS 3 295
EMU Emulator 296
Ensoniq ESQ1 296
envelope followers 38
envelope length 186
envelopes 131, 157

exponential ~ 152
inverted ~ 151
negative ~ 151

EQ 84
eq_para4.se1 91
eq10-1.se1 88
eq10-2.se1 90
equalization 84
equalizers

dynamic ~ 85
graphic ~ 85, 86
paragraphic ~ 85
parametric ~ 85, 91

EVM All-pass 80
EVM DBV 113
EVM LP Filter 144
EVM Vocoder 113
Examples 24
301

Index

302
exponential envelope 152

F

Fairlight CMI 296
Feedback Path

lining the ~ with Filters 57
file handling 272
file name extractor 277
File Open button 225
File Open dialog 217, 225
filter envelope

adding a ~ 150
filter types, comparison 146
filter.se1 33
filter_stereo.se1 34
filters 24

all-pass ~ 63, 80
auto ~ 35
biquad ~ 144
crossover ~ 116
FIR ~ 116
IIR ~ 116
Linkwitz-Riley ~ 117
one-pole ~ 116
simple ~ 32
stereo ~ 33
SV ~ 140

finite impulse response 116
FIR filters 116
Fixed Values 24
flanger 69

spectrogram 70
flanger modules, humming 73
flanger1.se1 71
flanger2.se1 72
flanger3.se1 73
flanger4.se1 74
Float

comparing ~ In with ~ In2 243
float array processing 246
Float plugs 16
Float Scaler 75, 204
Float to Bool 208
Float to Volts 216
FloatIO prefab 274
Flow Control 25

flow control 183
FM Operator 174
FM Synth

four-operator ~ 174
FM synthesis 123, 168
FM1 prefab 175
FM2 prefab 177
FM3 prefab 178
fold-back distortion 102, 105
fold-back1.se1 106
fold-back2.se1 106
fold-back3.se1 106
forced mono 188
Format Conversion 236
four-operator FM Synth 174
frequency modulation, see FM

G

gain knobs 37
gate types 244
Gibbs Effect 139
graphic equalizers 85, 86
graphic MIDI control indicator 289
GUI

~ input/output modules 210
~ plugs 17, 200
tweaking the ~ 74

H

hard clipping 103
hard knee compression 100
hardclip1.se1 104
hard-clipping 102
hard-knee compressor 96
hierarchic structure 15
High pass 24
http 226

I

I/O 25
Ignore PC 221
IIR filters 116
Image 24
Image to Frame 205

Index
immediate response 62
Increment2 206
infinite impulse response filters 116
Input Mode 36
Input/Output 25
Int to List2 209
integer 239
inverted envelopes 151
IO Mod module 19

J

Joystick Image 89, 213
Joystick prefab 230

K

Kawai K3 296
Kawai K5 297
KDL Animation Controls 241
KDL DiscoSwitch bf 269
KDL GuiFloat2MIDI 271
KDL GuiInt2MIDI 271
KDL GuiList2 254
KDL GuiList2MIDI 271
KDL GuiText2GuiText 255
KDL MIDI2GuiBool 272
KDL MIDI2GuiFloat 272, 290
KDL MIDI2GuiInt 272
KDL MIDI2GuiText 272
KDL Panel Switches 242
KDL PanelSwitch 285
KDL Volts2Hz 76, 91
keyboard tracking 153
Keytrack 154
Knob Sm 280
knobs

dry/wet 37
gain 37
scaling ~ 75

Korg
DW-8000 296
M1 297
MP-4 Mono/Poly 296
Poly 61 296
Poly 800 296
Polysix 296

Prophecy 298
Trident 296
Wavestation 297

L

level detector 97
LFO waveform 71
LFOs 40, 155

stereo ~ 41
tempo sync ~ 42

limiter 94
limiter1.se1 94, 95
limiting and ordering list selection

225
linear modules 186
linking to a website 226
Linkwitz-Riley filters 117
list

~ manipulation 247
splitting a ~ 232

List Entry module 44
List Entry2 72
List plugs 15
list selection 258

limiting and ordering 225
List to Bools 203
lists 252–255
Lock icon 43
locked containers 21
lo-fi effects 108
Logic 26
Low pass 24
LP-BitCrush 110

M

M:C ratio 172
main container 31
MAM MB-33 297
Many → 1 44
Math 26
MIDI 126, 271
MIDI (categorie) 26
MIDI automation 163
MIDI CC number 256
MIDI control indicator 289
303

Index

304
MIDI control voltage 21, 127
MIDI controllers 163
MIDI messages 157
MIDI plugs 16
MIDI to CV 127, 146
MIDI to CV properties 128
Minimoog 295
Minimoog Voyager 298
Mix prefab 147
mixing outputs 143
mod matrix 158
Mod Wheel prefab 166
Modifiers 26
modulated delay effects 69
modulation 155

making ~ more variable 73
modulation matrix 158, 176
modulator 168
module

~ properties 18
modules 15

data manipulation ~ 203, 236
data type conversion 256
data type conversion ~ 208
Dropdown List 212
file handling ~ 272
GUI input/output ~ 210
input/output ~ 258
IO Mod ~ 19
Joystick Image 89, 213
linear and non-linear modules

186
List Entry ~ 44
MIDI ~ 271
MIDI to CV 127, 146
parameter interface ~ 216, 266
route switches 269
routing ~ 218, 267
simple routing ~ 267
System Command2 219
third-party ~ 29
Tinted Bitmap Image 215
Volts to Float ~ 54
Wave Player 25
Wave Recorder 25

Monitor 27
Monitor module 182

mono 188
Moog Filter 144
Moog Memorymoog 296
Moog VCF Ladder Filter 144
Moog, Bob 295
moog_knob.png 222
moog_knob.txt 222
Moorer model 67
Moorer, James 65, 67
moorer1.se1 68
moorer2.se1 68
multi-band distortion 115
multi-band dynamic processor 115
multi-band processing 115
MultiFilters 36
multi-tap delay 59

GUI 61
multitap1.se1 61
multitap2.se1 61
multitap3.se1 61

N

NED Synclavier 296
negative envelopes 151
noise, white and pink ~ 28
non-linear modules 186
normalizing output level 142
Novation

SuperNova 298
Novation Bass-Station 297
NRPN 163
Numeric and Logical Operations

238
Nyquist frequency 106
Nyquist-Shannon sampling theorem

106

O

Oberheim OB series 296
Obsolete 27
Odyssey 295
OL Animation Position to List2 255
OL Control Reset2 270
OL Float Gate 270
OL List2SingleBool 257

Index
OL Random Float 242
OL SingleBool2List 257
OL_Squareroot 99
one-pole filters 116
operators, assembling ~ 174
optimizing effects 185
optimizing synths 186
osc selector 283
oscillators 134
output

mixing ~s 143
output level

normalizing ~ 142
overdrive 102
overdrive1.se1 104
overdrive2.se1 104

P

Panel Edit window 14
panel selection 223
paragraphic equalizers 85
parallel peak filters 82
parameter interface module 216
parametric equalizers 85, 91
Patch Mem 199
Patch Mem–List2 72
patches, adding ~ 163
peak compressor 96
peak filters

parallel ~ 82
peak limiter 94
peaking filters 84
Phase Disc Osc 29
phaser effects 80
phaser unit, dual-stage ~ 80
phaser, simulating feedback 82
phaser1.se1 81
phaser3.se1 83
ping-pong delays 55
pink noise 28, 137
pitch-shifting effects 115
plug types 15
plug-ins 14, 27
plugs

Float ~ 16
GUI ~ 17

List ~ 15
MIDI ~ 16
spare ~ 17
text ~ 16
voltage 15

polyphony 21, 186
PolySynth1 131
PolySynth10 160
PolySynth2 133
PolySynth3 136
PolySynth4 139
PolySynth6 149
PolySynth8 153
PolySynth9 154
PPG Wave 2 297
prefab

FloatIO ~ 274
Joystick 230

prefab controls 226
prefabs 18
Private 221
Properties 18
Prophet 5 296
Prophet VS 297
proportional-q 88
pulse 124
pulse width 136
Pythagorean distance formula 243

Q

Q factor 84
quantized tuning knob 282

R

Random Voltage 27
randomizing controls 242
RBJ_Coefficients 189
readouts 161
real-time color controls 280
Release 29
resampler1.se1 110
resampler2.se1 109
resonance levels 141
reverb 62, 69
reverberator 68
305

RH Logic_Gates 244
RH Redirect Set 268
RH_2D_3D_Distance 243
RH_Bitcount Set 243
RH_Float_Lcompare 243
RH_Int2Text-ascii 256
RH_Int2Text-MidiCC 256
RH_Int-Simple_Logic 244
RH_Rescale 245
RH-Fold-back 105
RH-Fold-back2 105
RMS 97
RMS calculation 98
RMS Level Detector

adding an ~ to a compressor 99
Roland

D-50 297
JD-800 297
JP-8000 298
Juno 60 296
Jupiter 8 296
TB-303 297

romplers 296
Root Mean Square, see RMS
routing modules 218
RPN 163

S

saw 124
sc:Quantizer 110
sc:RevAll-pass 67
sc:SoftDrive 104
Schroeder model 64
Schroeder, Manfred 63
schroeder1.se1 65
Scoofster AutoSleeper module 185
Scoofster Low-pass 144
Scoofster SVF 141
Scope2 137
SDK 29
SE LED2 228
selector button 232, 275
Sequential Circuits 296
Sequential Prophet VS 297
Sequential Sixtrak 296
shelving filters 84

sideband frequencies 173
sidebands 172
simple filter 32
Simple FM Example 169
skins 22, 46
SL FixedGui Series 245
SL Gui Limiters 245
SL Gui Splitter Series 268
SL Non-linear Scalers 237
SL Slider Linker 89
SL SliderLinker 270
SL_FloatAnimator 274
sleep mode 181
Smooth Peaks 139
SnH LFO 157
soft clipping 104
soft distortion 102
soft knee compression 100
soft-knee compressor 99
sound synthesis 123
Soundfont Oscillator 29
spare plugs 17
Special (modules) 27
splitting a list 232
Spring 207
ST_RUN 182
ST_STATIC 182
state variable filter, see SV filter
state-variable 51
Stereo Biquad 190
stereo controls, adding ~ 89
stereo cross delay 55
stereo filter 33
stereo LFO 41
Stereo SV Filter LP 190
strings 249–251
structure 15

embedding a ~ 54
Structure window 14
sub-controls 27, 193, 198

benefits 197
Bitmap Image 210
Bools to List 203
dB to Animation 204
Float Scaler 204
Float to Bool 208
future 293

Index
Image to Frame 205
Int to List2 209
List to Bools 203
native SynthEdit ~ 202
Spring 207
Text To Float 209

sub-controls down
six functional ~ groups 202, 235

substring, extracting a ~ from a
string 250

subtractive synthesis 124
Sustain 29
SV filter 140
SV Filter Norm 143
SV filters

cascading ~ 142
detuned ~ 191
optimized stereo ~ 190

switching voices off 79
Synchronizing Delay Time to Tempo

52
SynthEdit 13

~ SDK 29
structure 15

SynthEdit controls, native 193
SynthEdit sub-controls, native 202
synthesis

~ technologies 123
subtractive ~ 124

Synths 27
optimizing ~ 186

System Command2 219

T

taps 59
Technics

WSA-1 298
tempo sync LFO 42
Text Entry2 274, 275
Text I/O 265
text manipulation 247
text plugs 16
Text To Float 209, 274
third-party modules 29
Tinted Bitmap Image 215
tone controls 85

triangle 124
tuning knob, quantized ~ 282
two-band compressor 120
twoband_comp.se1 121

U

user interface, designing the ~ 178

V

value ranges
entering ~ 263, 264

VCA 146
VK_Mini-Grey 46
vocoder 110

~ with white noise 114
creating a ~ 111

vocoder1.se1 113
vocoder2.se1 114
Voice Combiner 27
voices

adding ~ 78
switching ~ off 79

voltage plugs 15
VoltageToTime 132
Volts to Float 216
Volts to Float module 54
vslider_med_back2.png 89, 90
vslider_med_handle.png 89, 90
VST 13
VST effects 31
VST plug-ins 14, 27

structure 198

W

Waldorf
MicroWave 297
MicroWave II 297
Q 298
Wave 297

Wave Player 25, 39
Wave Recorder 25
Waveform 28
waveform selector 71
waveforms 124, 137
307

Index

308
Waveshaper2 188
website, linking to a ~ 226
wet signal 51
white noise 28, 137

vocoder with ~ 114

Y

Yamaha
DX7 123, 168, 296
Motifs ES 297
VL1/VL7 298
VP1 298

	Imprint, Copyright
	Foreword by the Editor
	Table of Contents
	Welcome to the Wonderful World of SynthEdit
	What’s SynthEdit?
	VST Technology

	What’s a VST Plug-in?
	X-Raying SynthEdit’s Hierarchic Structure
	Modules
	Plug Types
	Voltage Plugs
	List Plugs
	Float Plugs
	MIDI Plugs
	Text Plugs
	Spare Plugs
	GUI Plugs

	Module Properties
	Prefabs
	Containers
	Controls on Module/Parent
	Locked Containers
	Polyphony
	Skins
	Automation

	Module/Prefab Categories
	Controls
	Conversion
	Effects
	Examples
	Filters
	Flow Control
	Input/Output
	Logic
	Math
	MIDI
	Modifiers
	Obsolete
	Special
	Sub-Controls
	Synths
	VST Plug-ins
	Waveform

	Third-party Modules

	Designing VST Effects in SynthEdit
	Meet the Family of VST Effects
	Kicking Off a VST Effect Project
	Cooking Up a Simple Filter Plug-in
	Double Up for Stereo

	Fun with Auto Filters
	Installing Dry/Wet and Gain Knobs
	Follow Up with an Envelope Follower
	Go Low by Adding an LFO
	Super-size the Signal with a Stereo LFO
	Adding a Tempo Sync LFO
	Finalizing the Filter
	Adding Patches and Presets

	Delay Effects
	Devising a Simple Delay
	Adding Dry/Wet Controls
	Slapping a Filter on the Wet Signal
	Synchronizing Delay Time to Tempo
	Serve and Volley with Cross Delays (Ping-pong Delays)
	Lining the Feedback Path with Filters
	Doing the Multi-tap Dance with Delays
	Finalizing the Multi-tap Delay

	Give ’Em Some Room with Reverb
	The Schroeder Model
	The Moorer Model
	Good-to-Know Facts about Reverb

	Modulated Delay Effects (Flanger, Chorus)
	Conjuring a Flanger
	Adding a Waveform Selector
	Making Modulation More Variable
	More About Flangers
	Tweaking the GUI
	Cooking Up a Chorus Effect
	Adding Two More Voices
	Switching Voices Off

	Phaser Effects
	Phaser Variation 1
	Phaser Variation 2

	Equalization
	Three-band Tone Controls
	Graphic Equalizers
	Adding Stereo Controls with Link Switch
	Parametric Equalizers

	Dynamic Processing
	Setting Up a Simple Peak Limiter
	Putting Together a Peak Compressor
	Adding an RMS Level Detector
	How to Average
	Figuring Out RMS
	Adding an RMS Level Detector to the Compressor
	Creating a Soft-knee Compressor

	Getting Down and Dirty with Distortion Effects
	Hard Clipping
	Soft Clipping
	Fold-back Distortion
	What’s Up with Aliasing?
	Adding Filters to the Sonic Equation
	Getting Ugly with Lo-fi Effects

	Vocoders
	Creating a Vocoder
	Improving Intelligibility

	More Mischief with Multi-band Processing
	Crossovers
	One-pole Filters
	Linkwitz-Riley Filters
	12�dB/Octave L-R Filters
	24�dB/Octave L-R Filters

	Putting Crossover Filters into Practice
	Building a Two-band Compressor

	Stepping Up to Synthesis
	Less Is More with Subtractive Synthesis
	Recapping Subtractive Synthesis
	More on MIDI
	MIDI to CV Properties
	Building a Basic Polyphonic Synth
	Sending Off Envelopes
	Adding Oscillators
	Pulse Width
	More on Waveforms
	Get Smooth with the Gibbs Effect
	Sizing Up Filters
	The State Variable Filter
	Selecting Type
	Resonance Levels
	Cascading More Filter Stages
	Normalizing Output Level
	Mixing Outputs

	The Moog Filter
	Biquad Filters
	How Different Filter Types Compare
	Slapping a Filter on a Synth
	Adding a No-frills Filter
	Adding a Filter Envelope
	Negative Envelopes
	Creating an Exponential Envelope

	Adding Keyboard Tracking
	More About Filters
	Modulation
	LFOs
	Envelopes
	MIDI Messages
	Making a Modulation Matrix
	Finalizing Your Synth
	Revealing with Readouts
	Adding Effects
	Adding Patches
	MIDI Automation

	Getting Funky with FM Synthesis
	Introduction
	Experimenting with Modulator and Carrier Algorithms
	Sidling Up to Sidebands
	Fabricating a Four-operator FM Synth
	Assembling Operators
	Adding a Modulation Matrix
	Designing the User Interface
	More Good Things to Do

	Making the Most of Performance
	What’s Sleep Mode?
	Go with Better Flow Control
	Optimizing Effects
	Optimizing Synths
	Polyphony
	Envelope Length
	Linear vs Non-linear Modules
	Forced Mono

	Less Is More, Usually
	Fight the Flab by Cutting Calculations
	Do the Math with Waveshaper2
	Using Shared Coefficients for Stereo Biquad Filters
	Stereo Filters with Identical Settings
	Detuned Filters

	All About Sub-controls
	What Are Sub-controls?
	A Traditional SynthEdit Control
	A Typical Control Built with Sub-controls
	The Wisdom of Using Sub-Controls

	More on What Sub-Controls Do and How They Do It
	GUI Controls, Audio Processing, and Parameters
	GUI Plugs and Data Types
	It Goes Both Ways—Data Flow and Animation

	A Look at Native SynthEdit Sub-controls
	Data Manipulation Modules
	Bools to List and List to Bools
	dB to Animation
	Float Scaler
	Image to Frame
	Increment2
	Spring

	Data Type Conversion Modules
	Float to Bool
	Int To List2
	Text To Float

	GUI Input/Output Modules
	Bitmap Image
	Dropdown List
	Joystick Image
	Text Entry2
	Tinted Bitmap Image

	Parameter Interface Modules
	Routing Modules
	Bool Splitter

	Miscellaneous Modules
	System Command2

	Putting Your Sub-control Skills into Practice
	Making Simple Connections
	Bitmaps as Controls
	Simple Panel Selection
	Limiting and Ordering List Selection
	Adding a File Open Button
	Linking to a Website
	Exploring SynthEdit Prefab Controls
	Adding Animation
	Splitting a List

	Extending the Sub-control Toolkit
	Data Manipulation Modules
	Format Conversion
	DH Color Format Converters
	DH_dBToVolts2, DH_FloatExpCurve, DH�HzToVolts2, DH_msToVolts2
	SL Non-linear Scalers
	Numeric and Logical Operations
	BK_ListToBools2
	DH_FloatIncrement
	DH_FloatCeil, DH_FloatFloor, DH_FloatQuantizer
	DH_FloatAbs
	DH Arithmetic Modules
	DH_FloatCompare, DH_IntCompare
	DH_FloatMin, DH_FloatMax
	DH_FloatToDigits
	DH_ModulusOp
	KDL Animation Controls
	KDL Panel Switches
	OL Random Float
	RH_2D_3D_Distance
	RH_Bitcount Set
	RH_Float_Lcompare
	RH_Int-Simple_Logic
	RH Logic_Gates
	RH_Rescale
	SL FixedGui Series
	SL Gui Limiters

	Float Array Processing
	DH_ArraySequencer
	DH_ArrayToFloats
	DH_FloatArray

	Text/List Manipulation
	DH_CharacterBitmapDriver
	DHFormat, DH_FloatFormat
	DH_LeftString, DH_RightString, DH_SubString
	DH_StringCompare
	DH_StringLength, DH_StringSearch
	DH_TextAppend
	DH_TextArray, DH_TextList, DHTextList2
	DH_ListExtractor
	DH_ListGenerator
	DH_ListSearch
	DH_ListStandardizer
	KDL GuiList2 … every data type
	KDL GuiText2GuiText
	OL Animation Position to List2
	RH_Int2Text-MidiCC
	RH_Int2Text-ascii

	Data Type Conversion Modules
	GUI Input/Output Modules
	List Selection
	Numeric I/O
	DH_MinMaxBar
	DH_MultiStepInput

	Text I/O
	Parameter Interface Modules
	DH_PatchArray Modules

	Routing Modules
	Simple Routing Modules
	Route Switches

	Miscellaneous Modules
	MIDI
	File Handling
	Other

	More Hands-on Examples
	FloatIO Prefab
	Custom Selector Button Redux
	File Name Extractor
	Real-time Color Controls
	Quantized Tuning Knob
	4-panel Osc Selector
	Using One Control Readout
	Graphic MIDI Control Indicator
	The Future of Sub-Controls

	A Brief History of Synthesizers
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

